CODE AND DATASETS

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	У
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
О	n	n	n	n	У
О	y	n	n	y	У
O	n	y	n	y	n
0	у	y	У	У	У
-1	y	y	y	n	У
-1	n	n	y	y	n
-1	n	n	y	n	У
-1	y	n	y	n	У
-2	n	n	y	y	n
-2	n	y	y	n	У
-2	y	n	y	n	n
-2	y	n	y	n	У

Table 1: Course rating data set

BIBLIOGRAPHY

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for domain adaptation. *Advances in neural information processing systems*, 19:137, 2007.

Steffen Bickel, Michael Bruckner, and Tobias Scheffer. Discriminative learning for differing training and test distributions. In *Proceedings* of the International Conference on Machine Learning (ICML), 2007.

Sergey Brin. Near neighbor search in large metric spaces. In *Conference on Very Large Databases (VLDB)*, 1995.

Hal Daumé III. Frustratingly easy domain adaptation. In *Conference of the Association for Computational Linguistics (ACL)*, Prague, Czech Republic, 2007.

Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. On the (im)possibility of fairness. *arXiv preprint arXiv:1609.07236*, 2016.

Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning. In *Advances in Neural Information Processing Systems*, pages 3315–3323, 2016.

Matti Kääriäinen. Lower bounds for reductions. Talk at the Atomic Learning Workshop (TTI-C), March 2006.

Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

J. Ross Quinlan. Induction of decision trees. *Machine learning*, 1(1): 81–106, 1986.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, 65:386–408, 1958. Reprinted in *Neurocomputing* (MIT Press, 1998).

Stéphane Ross, Geoff J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. In *Proceedings of the Workshop on Artificial Intelligence and Statistics (AIStats)*, 2011.

INDEX

K-nearest neighbors, 58	categorical features, 30	dual variables, 151
$d_{\mathcal{A}}$ -distance, 82	chain rule, 117, 120	
<i>p</i> -norms, 104	chord, 102	early stopping, 53, 132
o/1 loss, 100	circuit complexity, 138	embedding, 178
80% rule, 80	clustering, 35, 178	ensemble, 164
	clustering quality, 178	error driven, 43
absolute loss, 14	complexity, 34	error rate, 100
activation function, 130	compounding error, 215	estimation error, 71
activations, 41	concave, 102	Euclidean distance, 31
AdaBoost, 166	concavity, 193	evidence, 127
adaptation, 74	concept, 157	example normalization, 59, 60
algorithm, 99	confidence intervals, 68	examples, 9
all pairs, 92	constrained optimization problem,	expectation maximization, 186, 189
all versus all, 92	112	expected loss, 16
approximation error, 71	contour, 104	expert, 212
architecture selection, 139	convergence rate, 107	exponential loss, 102, 169
area under the curve, 64, 96	convex, 99, 101	
argmax problem, 199	covariate shift, 74	feasible region, 113
AUC, 64, 95, 96	cross validation, 65, 68	feature augmentation, 78
AVA, 92	cubic feature map, 144	feature combinations, 54
averaged perceptron, 52	curvature, 107	feature mapping, 54
		feature normalization, 59
back-propagation, 134, 137	data covariance matrix, 184	feature scale, 33
bag of words, 56	data generating distribution, 15	feature space, 31
bagging, 165	decision boundary, 34	feature values, 11, 29
base learner, 164	decision stump, 168	feature vector, 29, 31
batch, 173	decision tree, 8, 10	features, 11, 29
Bayes error rate, 20	decision trees, 57	forward-propagation, 137
Bayes optimal classifier, 19	density estimation, 76	fractional assignments, 191
Bayes optimal error rate, 20	development data, 26	furthest-first heuristic, 180
Bayes rule, 117	dimensionality reduction, 178	
Bernouilli distribution, 121	discrepancy, 82	Gaussian distribution, 121
bias, 42	discrete distribution, 121	Gaussian kernel, 147
bias/variance trade-off, 72	disparate impact, 80	Gaussian Mixture Models, 191
binary features, 30	distance, 31	generalize, 9, 17
bipartite ranking problems, 95	domain adaptation, 74	generative story, 123
boosting, 155, 164	dominates, 63	geometric view, 29
bootstrap resampling, 165	dot product, 45	global minimum, 106
bootstrapping, 67, 69	dual problem, 151	GMM, 191
* * • •		

gradient, 105	KKT conditions, 152	non-convex, 135
gradient ascent, 105		non-linear, 129
gradient descent, 105	label, 11	Normal distribution, 121
	Lagrange multipliers, 119	normalize, 46, 59
Hamming loss, 202	Lagrange variable, 119	null hypothesis, 67
hard-margin SVM, 113	Lagrangian, 119	
hash kernel, 177	lattice, 200	objective function, 100
held-out data, 26	layer-wise, 139	one versus all, 90
hidden units, 129	learning by demonstration, 212	one versus rest, 90
hidden variables, 186	leave-one-out cross validation, 65	online, 42
hinge loss, 102, 203	level-set, 104	optimization problem, 100
histogram, 12	license, 2	oracle, 212, 220
horizon, 213	likelihood, 127	oracle experiment, 28
hyperbolic tangent, 130	linear classifier, 169	output unit, 129
hypercube, 38	linear classifiers, 169	OVA, 90
hyperparameter, 26, 44, 101	linear decision boundary, 41	overfitting, 23
hyperplane, 41	linear regression, 110	oversample, 88
hyperspheres, 38	linearly separable, 48	
hypothesis, 71, 157	link function, 130	p-value, 67
hypothesis class, 71, 160	log likelihood, 118	PAC, 156, 166
hypothesis testing, 67	log posterior, 127	paired t-test, 67
	log probability, 118	parametric test, 67
i.i.d. assumption, 117	log-likelihood ratio, 122	parity, 21
identically distributed, 24	logarithmic transformation, 61	parity function, 138
ILP, 195, 207	logistic loss, 102	patch representation, 56
imbalanced data, 85	logistic regression, 126	PCA, 184
imitation learning, 212	LOO cross validation, 65	perceptron, 41, 42, 58
importance sampling, 75	loss function, 14	perpendicular, 45
importance weight, 86	loss-augmented inference, 205	pixel representation, 55
independent, 24	loss-augmented search, 205	policy, 212
independently, 117		polynomial kernels, 146
independently and identically dis-	margin, 49, 112	positive semi-definite, 146
tributed, 117	margin of a data set, 49	posterior, 127
indicator function, 100	marginal likelihood, 127	precision, 62
induce, 16	marginalization, 117	precision/recall curves, 63
induced distribution, 88	Markov features, 198	predict, 9
induction, 9	maximum a posteriori, 127	preference function, 94
inductive bias, 20, 31, 33, 103, 121	maximum depth, 26	primal variables, 151
integer linear program, 207	maximum likelihood estimation, 118	principle components analysis, 184
integer linear programming, 195	mean, 59	prior, 127
iteration, 36	Mercer's condition, 146	probabilistic modeling, 116
, 90	model, 99	Probably Approximately Correct, 156
jack-knifing, 69	modeling, 25	programming by example, 212
Jensen's inequality, 193	multi-layer network, 129	projected gradient, 151
ž , , , , , ,	muni-layer network, 129	projection, 46
joint, 124		
**	naive Bayes assumption, 120	psd, 146
K-nearest neighbors, 32	nearest neighbor, 29, 31	
Karush-Kuhn-Tucker conditions, 152	neural network, 169	radial basis function, 139
kernel, 141, 145	neural networks, 54, 129	random forests, 169
kernel trick, 146	neurons, 41	random variable, 117
kernels, 54	noise, 21	RBF kernel, 147

DDE notocodo seo		tions beginning
RBF network, 139	span, 143	time horizon, 213
recall, 62	sparse, 104	total variation distance, 82
receiver operating characteristic, 64	specificity, 64	train/test mismatch, 74
reconstruction error, 184	squared loss, 14, 102	training data, 9, 16, 24
reductions, 88	statistical inference, 116	training error, 16
redundant features, 56	statistically significant, 67	trajectory, 213
regularized objective, 101	steepest ascent, 105	trellis, 200
regularizer, 100, 103	stochastic gradient descent, 173	trucated gradients, 175
reinforcement learning, 212	stochastic optimization, 172	two-layer network, 129
representer theorem, 143, 145	strong law of large numbers, 24	•
ROC curve, 64	strong learner, 166	unary features, 198
	strong learning algorithm, 166	unbiased, 47
sample complexity, 157, 158, 160	strongly convex, 107	underfitting, 23
sample mean, 59	structural risk minimization, 99	unit hypercube, 39
sample selection bias, 74	structured hinge loss, 203	unit vector, 46
sample variance, 59	structured prediction, 195	unsupervised adaptation, 75
semi-supervised adaptation, 75	sub-sampling, 87	unsupervised learning, 35
sensitivity, 64	subderivative, 108	ansapervisea learning, 33
separating hyperplane, 99	subgradient, 108	validation data, 26
sequential decision making, 212	subgradient descent, 109	Vapnik-Chernovenkis dimension, 162
SGD, 173	sum-to-one, 117	variance, 59, 165
shallow decision tree, 21, 168		variational distance, 82
	support vector machine, 112	
shape representation, 56	support vectors, 153	VC dimension, 162
sigmoid, 130	surrogate loss, 102	vector, 31
sigmoid function, 126	symmetric modes, 135	visualize, 178
sigmoid network, 139		vote, 32
sign, 130	t-test, 67	voted perceptron, 52
single-layer network, 129	test data, 25	voting, 52
singular, 110	test error, 25	
slack, 148	test set, 9	weak learner, 166
slack parameters, 113	text categorization, 56	weak learning algorithm, 166
smoothed analysis, 180	the curse of dimensionality, 37	weights, 41
soft assignments, 190	threshold, 42	
soft-margin SVM, 113	Tikhonov regularization, 99	zero/one loss, 14