
18 | IMITATION LEARNING

Dependencies:

So far, we have largely considered machine learning

problems in which the goal of the learning algorithm is to make
a single prediction. In many real world problems, however, an algo-
rithm must make a sequence of decisions, with the world possibly
changing during that sequence. Such problems are often called se-
quential decision making problems. A straightforward example—
which will be the running example for this chapter—is that of self-
driving cars. We want to train a machine learning algorithm to drive
a car. But driving a car is not a single prediction: it’s a sequence of
predictions over time. And as the machine is driving the car, the
world around it is changing, often based on its own behavior. This
creates complicated feedback loops, and one of the major challenges
we will face is how to deal with these feedback loops.

To make this discussion more concrete, let’s consider the case of a
self-driving car. And let’s consider a very simplistic car, in which the
only decision that has to be made is how to steer, and that’s between
one of three options: {left, right, none}. In the imitation learning
setting, we assume that we have access to an expert or oracle that al-
ready knows how to drive. We want to watch the expert driving, and
learn to imitate their behavior. Hence: imitation learning (sometimes
called learning by demonstration or programming by example, in
the sense that programs are learned, and not implemented).

At each point in time t = 1 . . . T, the car recieves sensor informa-
tion xt (for instance, a camera photo ahead of the car, or radar read-
ings). It then has to take an action, at; in the case of the car, this is
one of the three available steering actions. The car then suffers some
loss `t; this might be zero in the case that it’s driving well, or large in
the case that it crashes. The world then changes, moves to time step
t + 1, sensor readings xt+1 are observed, action at+1 is taken, loss `t+1

is suffered, and the process continues.
The goal is to learn a function f that maps from sensor readings xt

to actions. Because of close connections to the field of reinforcement
learning, this function is typically called a policy. The measure of

Learning Objectives:
• Be able to formulate imitation

learning problems.

• Understand the failure cases of
simple classification approaches to
imitation learning.

• Implement solutions to those prob-
lems based on either classification or
dataset aggregation.

• Relate structured prediction and
imitation learning.

Programming is a skill best acquired by practice and example
rather than from books. – Alan Turing

imitation learning 213

success of a policy is: if we were to run this policy, how much total
loss would be suffered. In particular, suppose that the trajectory
(denoted τ) of observation/action/reward triples encountered by
your policy is:

τ = x1 , a1︸︷︷︸
= f (x1)

, `1 , x2 , a2︸︷︷︸
= f (x2)

, `2 , . . . , xT , aT︸︷︷︸
= f (xT)

, `T (18.1)

The losses `t depend implicitly on the state of the world and the
actions of the policy. The goal of f is to minimize the expected loss

Eτ∼ f

[
∑T

t=1 `t

]
, where the expectation is taken over all randomness in

the world, and the sequence of actions taken is according to f .1 1 It’s completely okay for f to look
at more than just xt when making
predictions; for instance, it might want
to look at xt−1, or at−1 and at−2. As
long as it only references information
from the past, this is fine. For notational
simplicity, we will assume that all of
this relevant information is summarized
in xt.

18.1 Imitation Learning by Classification

expertexpert

Figure 18.1: A single expert trajectory in
a self-driving car.

We will begin with a straightforward, but brittle, approach to imita-
tion learning. We assume access to a set of training trajectories taken
by an expert. For example, consider a self-driving car, like that in Fig-
ure 18.1. A single trajectory τ consists of a sequence of observations
(what is seen from the car’s sensors) and a sequence of actions (what
action did the expect take at that point in time). The idea in imitation
learning by classification is to learn a classifier that attempts to mimic
the expert’s action based on the observations at that time.

In particular, we have τ1, τ2, . . . , τN . Each of the N trajectories
comprises a sequence of T-many observation/action/loss triples,
where the action is the action taken by the expert. T, the length of
the trajectory is typically called the time horizon (or just horizon).
For instance, we may ask an expert human driver to drive N = 20
different routes, and record the observations and actions that driver
saw and took during those routes. These are our training trajectories.
We assume for simplicity that each of these trajectories is of fixed
length T, though this is mostly for notational convenience.

The most straightforward thing we can do is convert this expert
data into a big multiclass classification problem. We take our favorite
multiclass classification algorithm, and use it to learn a mapping
from x to a. The data on which it is trained is the set of all observa-
tion/action pairs visited during any of the N trajectories. In total,
this would be NT examples. This approach is summarized in Algo-
rithm 18.1 for training and Algorithm 18.1 for prediction.

How well does this approach work?
The first question is: how good is the expert? If we learn to mimic

an expert, but the expert is no good, we lose. In general, it also seems
unrealistic to believe this algorithm should be able to improve on
the expert. Similarly, if our multiclass classification algorithm A
is crummy, we also lose. So part of the question “how well does

214 a course in machine learning

Algorithm 43 SupervisedImitationTrain(A, τ1, τ2, . . . , τN)
1: D ←

〈
(x, a) : ∀n , ∀(x, a, `) ∈ τn

〉
// collect all observation/action pairs

2: return A(D) // train multiclass classifier on D

Algorithm 44 SupervisedImitationTest(f)
1: for t = 1 . . . T do
2: xt ← current observation
3: at ← f (xt) // ask policy to choose an action
4: take action at
5: `t ← observe instantaneous loss
6: end for
7: return ∑T

t=1 `t // return total loss

this work” is the more basic question of: what are we even trying to
measure?

There is a nice theorem2 that gives an upper bound on the loss 2 Ross et al. 2011

suffered by the SupervisedIL algorithm (Algorithm 18.1) as a func-
tion of (a) the quality of the expert, and (b) the error rate of the
learned classifier. To be clear, we need to distinguish between the
loss of the policy when run for T steps to form a full trajectory, and
the error rate of the learned classifier, which is just it’s average mul-
ticlass classification error. The theorem states, roughly, that the loss
of the learned policy is at most the loss of the expert plus T2 times the
error rate of the classifier.

Theorem 18 (Loss of SupervisedIL). Suppose that one runs Algo-
rithm 18.1 using a multiclass classifier that optimizes the 0-1 loss (or an
upperbound thereof). Let ε be the error rate of the underlying classifier
(in expectation) and assume that all instantaneous losses are in the range
[0, `(max)]. Let f be the learned policy; then:

Eτ∼ f

[
∑

t
`t

]
︸ ︷︷ ︸

loss of learned policy

≤ Eτ∼expert

[
∑

t
`t

]
︸ ︷︷ ︸

loss of expert

+`(max)T2ε (18.2)

Intuitively, this bound on the loss is about a factor of T away from
what we might hope for. In particular, the multiclass classifier makes
errors on an ε fraction of it’s actions, measured by zero/one loss.
In the worst case, this will lead to a loss of `(max)ε for a single step.
Summing all these errors over the entire trajectory would lead to
a loss on the order of `(max)Tε, which is a factor T better than this
theorem provides. A natural question (addressed in the next section)
is whether this is analysis is tight. A related question (addressed in
the section after that) is whether we can do better. Before getting
there, though, it’s worth highlighting that an extra factor of T is really

imitation learning 215

bad. It can cause even very small multiclass error rates to blow up; in
particular, if ε ≥ 1/T, we lose, and T can be in the hundreds or more.

18.2 Failure Analysis

The biggest single issue with the supervised learning approach to
imitation learning is that it cannot learn to recover from failures. That
is: it has only been trained based on expert trajectories. This means
that the only training data it has seen is that of an expert driver. If
it ever veers from that state distribution, it may have no idea how
to recover. As a concrete example, perhaps the expert driver never
ever gets themselves into a state where they are directly facing a
wall. Moreover, the expert driver probably tends to drive forward
more than backward. If the imperfect learner manages to make a few
errors and get stuck next to a wall, it’s likely to resort to the general
“drive forward” rule and stay there forever. This is the problem of
compounding error; and yes, it does happen in practice.

It turns out that it’s possible to construct an imitation learning
problem on which the T2 compounding error is unavoidable. Con-
sider the following somewhat artificial problem. At time t = 1 you’re
shown a picture of either a zero or a one. You have two possible ac-
tions: press a button marked “zero” or press a button marked “one.”
The “correct” thing to do at t = 1 is to press the button that corre-
sponds to the image you’ve been shown. Pressing the correct button
leads to `1 = 0; the incorrect leads to `1 = 1. Now, at time t = 2 you
are shown another image, again of a zero or one. The correct thing to
do in this time step is the xor of (a) the number written on the picture
you see right now, and (b) the correct answer from the previous time
step. This holds in general for t > 1.

There are two important things about this construction. The first
is that the expert can easily get zero loss. The second is that once the
learned policy makes a single mistake, this can cause it to make all
future decisions incorrectly. (At least until it “luckily” makes another
“mistake” to get it back on track.)

Based on this construction, you can show the following theorem3. 3 Kääriäinen 2006

Theorem 19 (Lower Bound for SupervisedIL). There exist imitation
learning problems on which Algorithm 18.1 is able to achieve small classifi-
cation error ε ∈ [0, 1/T] under an optimal expert, but for which the test loss
is lower bounded as:

Eτ∼ f

[
∑

t
`t

]
︸ ︷︷ ︸

loss of learned policy

≥ T + 1
2
− 1

4ε

[
1− (1− 2ε)T+1

]
(18.3)

which is bounded by T2ε and, for small ε, grows like T2ε.

216 a course in machine learning

Up to constants, this gives matching upper and lower bounds for
the loss of a policy learned by supervised imitation learning that is
pretty far (a factor of T) from what we might hope for.

18.3 Dataset Aggregation

Supervised imitation learning fails because once it gets “off the ex-
pert path,” things can go really badly. Ideally, we might want to train
our policy to deal with any possible situation it could encounter.
Unfortunately, this is unrealistic: we cannot hope to be able to train
on every possible configuration of the world; and if we could, we
wouldn’t really need to learn anyway, we could just memorize. So
we want to train f on a subset of world configurations, but using
“configurations visited by the expert” fails because f cannot learn to
recover from its own errors. Somehow what we’d like to do is train f
to do well on the configurations that it, itself, encounters!

This is a classic chicken-and-egg problem. We want a policy f that
does well in a bunch of world configurations. What set of configura-
tions? The configurations that f encounters! A very classic approach
to solving chicken-and-egg problems is iteration. Start with some
policy f . Run f and see what configurations is visits. Train a new f
to do well there. Repeat.

This is exactly what the Dataset Aggregation algorithm (“Dagger”)
does. Continuing with the self-driving car analogy, we first let a
human expert drive a car for a while, and learn an initial policy f0 by
running standard supervised imitation learning (Algorithm 18.1) on
the trajectories visited by the human. We then do something unusual.
We put the human expert in the car, and record their actions, but the
car behaves not according to the expert’s behavior, but according to
f0. That is, f0 is in control of the car, and the expert is trying to steer,
but the car is ignoring them4 and simply recording their actions as 4 This is possibly terrifying for the

expert!training data. This is shown in Figure 18.2.

expertexpert

ff00

Figure 18.2: In DAgger, the trajectory
(red) is generated according to the
previously learned policy, f0, but the
gold standard actions are given by the
expert.

Based on trajectories generated by f0 but actions given by the
expert, we generate a new dataset that contains information about
how to recover from the errors of f0. We now will train a new policy,
f1. Because we don’t want f1 to “forget” what f0 already knows, f1

is trained on the union of the initial expert-only trajectories together
with the new trajectories generated by f0. We repeat this process a
number of times MaxIter, yielding Algorithm 18.3.

This algorithm returns the list of all policies generated during its
run. A very practical question is: which one should you use? There
are essentially two choices. The first choice is just to use the final
policy learned. The problem with this approach is that Dagger can
be somewhat unstable in practice, and policies do not monotonically

imitation learning 217

Algorithm 45 DaggerTrain(A, MaxIter, N, expert)

1: 〈τ(0)
n 〉Nn=1 ← run the expert N many times

2: D0 ←
〈
(x, a) : ∀n , ∀(x, a, `) ∈ τ(0)

n
〉

// collect all pairs (same as supervised)
3: f0 ← A(D0) // train initial policy (multiclass classifier) on D0
4: for i = 1 . . . MaxIter do
5: 〈τ(i)

n 〉Nn=1 ← run policy fi−1 N-many times // trajectories by fi−1

6: Di ←
〈
(x, expert(x)) : ∀n , ∀(x, a, `) ∈ τ(i)

n
〉

// collect data set
// observations x visited by fi−1

// but actions according to the expert

7: fi ← A
(⋃i

j=0 Dj

)
// train policy fi on union of all data so far

8: end for
9: return 〈 f0, f1, . . . , fMaxIter〉 // return collection of all learned policies

improve. A safer alternative (as we’ll see by theory below) is to test
all of them on some held-out “development” tasks, and pick the one
that does best there. This requires a bit more computation, but is a
much better approach in general.

One major difference in requirements between Dagger (Algo-
rithm 18.3) and SupervisedIL (Algorithm 18.1) is the requirement
of interaction with the expert. In SupervisedIL, you only need access
to a bunch of trajectories taken by the expert, passively. In Dagger,
you need access to them expert themselves, so you can ask questions
like “if you saw configuration x, what would you do?” This puts
much more demand on the expert.

Another question that arises is: what should N, the number of
trajectories generated in each round, be? In practice, the initial N
should probably be reasonably large, so that the initial policy f0

is pretty good. The number of trajectories generated by iteration
subsequently can be much smaller, perhaps even just one.

Intuitively, Dagger should be less sensitive to compounding error
than SupervisedIL, precisely because it gets trained on observations
that it is likely to see at test time. This is formalized in the following
theorem:

Theorem 20 (Loss of Dagger). Suppose that one runs Algorithm 18.3
using a multiclass classifier that optimizes the 0-1 loss (or an upperbound
thereof). Let ε be the error rate of the underlying classifier (in expectation)
and assume that all instantaneous losses are in the range [0, `(max)]. Let f be
the learned policy; then:

Eτ∼ f

[
∑

t
`t

]
︸ ︷︷ ︸

loss of learned policy

≤ Eτ∼expert

[
∑

t
`t

]
︸ ︷︷ ︸

loss of expert

+`(max)Tε + O
(
`(max)T log T

MaxIter

)

(18.4)

Furthermore, if the loss function is strongly convex in f , and MaxIter is

218 a course in machine learning

Õ(T/ε), then:

Eτ∼ f

[
∑

t
`t

]
︸ ︷︷ ︸

loss of learned policy

≤ Eτ∼expert

[
∑

t
`t

]
︸ ︷︷ ︸

loss of expert

+`(max)Tε + O(ε) (18.5)

Both of these results show that, assuming MaxIter is large enough,
the loss of the learned policy f (here, taken to be the best on of all
the MaxIter policies learned) grows like Tε, which is what we hope
for. Note that the final term in the first bound gets small so long as
MaxIter is at least T log T.

18.4 Expensive Algorithms as Experts

Because of the strong requirement on the expert in Dagger (i.e., that
you need to be able to query it many times during training), one of
the most substantial use cases for Dagger is to learn to (quickly) imi-
tate otherwise slow algorithms. Here are two prototypical examples:

1. Game playing. When a game (like chess or minecraft) can be run
in simulation, you can often explicitly compute a semi-optimal
expert behavior with brute-force search. But this search might be
too computationally expensive to play in real time, so you can
use it during training time, learning a fast policy that attempts
to mimic the expensive search. This learned policy can then be
applied at test time.

2. Discrete optimizers. Many discrete optimization problems can be
computationally expensive to run in real time; for instance, even
shortest path search on a large graph can be too slow for real time
use. We can compute shortest paths offline as “training data” and
then use imitation learning to try to build shortest path optimizers
that will run sufficiently efficiently in real time.

Consider the game playing example, and for concreteness, sup-
pose you are trying to learn to play solitaire (this is an easier exam-
ple because it’s a single player game). When running DaggerTrain
(Algorithm 18.3 to learn a chess-playing policy, the algorithm will
repeatedly ask for expert(x), where x is the current state of the game.
What should this function return? Ideally, it should return the/an ac-
tion a such that, if a is taken, and then the rest of the game is played
optimally, the player wins. Computing this exactly is going to be very
difficult for anything except the simplest games, so we need to restort
to an approxiamtion.

imitation learning 219

Algorithm 46 DepthLimitedDFS(x, h, MaxDepth)
1: if x is a terminal state or MaxDepth ≤ 0 then
2: return (⊥, h(x)) // if we cannot search deeper

// return “no action” (⊥) and the current heuristic score
3: else
4: BestAction, BestScore← ⊥, −∞ // keep track of best action & its score
5: for all actions a from x do
6: (_, score)← DepthLimitedDFS(x ◦ a, h, MaxDepth− 1) // get score

// for action a, depth reduced by one by appending a to x
7: if score > BestScore then
8: BestAction, BestScore← a, score // update tracked best action & score
9: end if

10: end for
11: end if
12: return (BestAction, BestScore) // return best found action and its score

Figure 18.3: imit:dldfs: Depth limited
depth-first search

A common strategy is to run a depth-limited depth first search,
starting at state x, and terminating after at most three of four moves
(see Figure 18.3). This will generate a search tree. Unless you are
very near the end of the game, none of the leaves of this tree will
correspond to the end of the game. So you’ll need some heuristic, h,
for evaluating states that are non-terminals. You can propagate this
heuristic score up to the root, and choose the action that looks best
with this depth four search. This is not necessarily going to be the
optimal action, and there’s a speed/accuracy trade-off for searching
deeper, but this is typically effective. This approach summarized in
Algorithm 18.4.

18.5 Structured Prediction via Imitation Learning

A final case where an expert can often be computed algorithmically
arises when one solves structured prediction (see Chapter 17) via
imitation learning. It is clearest how this can work in the case of
sequence labeling. Recall there that predicted outputs should be
sequences of labels. The running example from the earlier chapter
was:

x = “ monsters eat tasty bunnies “ (18.6)

y = noun verb adj noun (18.7)

One can easily cast the prediction of y as a sequential decision mak-
ing problem, by treating the production of y in a left-to-right manner.
In this case, we have a time horizon T = 4. We want to learn a policy
f that first predicts “noun” then “verb” then “adj” then “noun” on
this input.

220 a course in machine learning

Let’s suppose that the input to f consists of features extracted both
from the input (x) and the current predicted output prefix ŷ, denoted
φ(x, ŷ). For instance, φ(x, ŷ) might represent a similar set of features
to those use in Chapter 17. It is perhaps easiest to think of f as just
a classifier: given some features of the input sentence x (“monsters
eat tasty bunnies”), and some features about previous predictions in
the output prefix (so far, produced “noun verb”), the goal of f is to
predict the tag for the next word (“tasty”) in this context.

An important question is: what is the “expert” in this case? In-
tuitively, the expert should provide the correct next label, but what
does this mean? That depends on the loss function being optimized.
Under Hamming loss (sum zero/one loss over each individual pre-
diction), the expert is straightforward. When the expert is asked to
produce an action for the third word, the expert’s response is always
“adj” (or whatever happens to be the correct label for the third word
in the sentence it is currently training on).

More generally, the expert gets to look at x, y and a prefix ŷ of the
output. Note, importantly, that the prefix might be wrong! In particular,
after the first iteration of Dagger, the prefix will be predicted by
the learned policy, which may make mistakes! The expert also has
some structured loss function ` that it is trying to minimize. Like
in the previous section, the expert’s goal is to choose the action that
minimizes the long-term loss according to ` on this example.

To be more formal, we need a bit of notation. Let best(`, y, ŷ)
denote the loss (according to ` and the ground truth y) of the best
reachable output starting at ŷ. For instance, if y is “noun verb adj
noun” and ŷ is “noun noun”, and the loss is Hamming loss, then the
best achievable output (predicting left-to-right) is “noun noun adj
noun” which has a loss of 1. Thus, best for this situation is 1.

Given that notion of best, the expert is easy to define:

expert(`, y, ŷ) = argmin
a

best(`, y, ŷ ◦ a) (18.8)

Namely, it is the action that leads to the best possible completion
after taking that action. So in the example above, the expert action
is “adj”. For some problems and some loss functions, computing
the expert is easy. In particular, for sequence labeling under Ham-
ming loss, it’s trivial. In the case that you can compute the expert
exactly, it is often called an oracle.5 For some other problems, exactly 5 Some literature calls it a “dynamic

oracle”, though the extra word is
unnecessary.

computing an oracle is computationally expensive or intractable. In
those cases, one can often resort to depth limited depth-first-search
(Algorithm 18.4) to compute an approximate oracle as an expert.

To be very concrete, a typical implementation of Dagger applied
to sequence labeling would go as follows. Each structured training
example (a pair of sentence and tag-sequence) gives rise to one trajec-

imitation learning 221

tory. At training time, a predict tag seqence is generated left-to-right,
starting with the empty sequence. At any given time step, you are
attempting to predict the label of the tth word in the input. You de-
fine a feature vector φ(x, ŷ), which will typically consist of: (a) the tth
word, (b) left and right neighbors of the tth word, (c) the last few pre-
dictions in ŷ, and (d) anything else you can think of. In particular, the
features are not limited to Markov style features, because we’re not
longer trying to do dynamic programming. The expert label for the
tth word is just the corresponding label in the ground truth y. Given
all this, one can run Dagger (Algorithm 18.4) exactly as specified.

Moving to structured prediction problems other than sequence
labeling problems is beyond the scope of this book. The general
framework is to cast your structured prediction problem as a sequen-
tial decision making problem. Once you’ve done that, you need to
decide on features (this is the easy part) and an expert (this is often
the harder part). However, once you’ve done so, there are generic
libraries for “compiling” your specification down to code.

18.6 Further Reading

TODO further reading

	Imitation Learning
	Imitation Learning by Classification
	Failure Analysis
	Dataset Aggregation
	Expensive Algorithms as Experts
	Structured Prediction via Imitation Learning
	Further Reading

