
17 | STRUCTURED PREDICTION

Dependencies:

It is often the case that instead of predicting a single output, you
need to predict multiple, correlated outputs simultaneously. In nat-
ural language processing, you might want to assign a syntactic label
(like noun, verb, adjective, etc.) to words in a sentence: there is clear
correlation among these labels. In computer vision, you might want
to label regions in an image with object categories; again, there is
correlation among these regions. The branch of machine learning that
studies such questions is structured prediction.

In this chapter, we will cover two of the most common algorithms
for structured prediction: the structured perceptron and the struc-
tured support vector machine. We will consider two types of struc-
ture. The first is the “sequence labeling” problem, typified by the
natural language processing example above, but also common in
computational biology (labeling amino acids in DNA) and robotics
(labeling actions in a sequence). For this, we will develop specialized
prediction algorithms that take advantage of the sequential nature
of the task. We will also consider more general structures beyond
sequences, and discuss how to cast them in a generic optimization
framework: integer linear programming (or ILP).

The general framework we will explore is that of jointly scoring
input/output configurations. We will construct algorithms that learn a
function s(x, ŷ) (s for “score”), where x is an input (like an image)
and ŷ is some predicted output (like a segmentation of that image).
For any given image, there are a lot of possible segmentations (i.e.,
a lot of possible ŷs), and the goal of s is to rank them in order of
“how good” they are: how compatible they are with the input x. The
most important thing is that the scoring function s ranks the true
segmentation y higher than any other imposter segmentation ŷ. That
is, we want to ensure that s(x, y) > s(x, ŷ) for all ŷ 6= y. The main
challenge we will face is how to do this efficiently, given that there are
so many imposter ŷs.

Learning Objectives:
• Recognize when a problem should

be solved using a structured predic-
tion technique.

• Implement the structured perceptron
algorithm for sequence labeling.

• Map “argmax” problems to integer
linear programs.

• Augment the structured perceptron
with losses to derive structured
SVMs.

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x ∈ RD and output labels y ∈ {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector φ(x, y):

s(x, y) = w · φ(x, y) (17.1)

Here, the features φ(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent φ, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

φ(x, k) =
〈

0, 0, . . . , 0︸ ︷︷ ︸
D(k−1) zeros

, x︸︷︷︸
∈RD

, 0, 0, . . . , 0︸ ︷︷ ︸
D(K−k) zeros

〉
∈ RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ∈[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ∈[1,K]

w · φ(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w← w + φ(x, y)− φ(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

structured prediction 197

Algorithm 39 MulticlassPerceptronTrain(D, MaxIter)
1: w ← 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) ∈ D do
4: ŷ ← argmaxk w · φ(x, k) // compute prediction
5: if ŷ 6= y then
6: w ← w + φ(x, y)− φ(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

w(new) are the weights after update. Then:

w(new) · φ(x, y) (17.6)

=
(

w(old) + φ(x, y)− φ(x, ŷ)
)
· φ(x, y) (17.7)

= w(old) · φ(x, y)︸ ︷︷ ︸
old prediction

+ φ(x, y) · φ(x, y)︸ ︷︷ ︸
≥0

− φ(x, ŷ) · φ(x, y)︸ ︷︷ ︸
=0

(17.8)

Here, the first term is the old prediction. The second term is of the
form a · a which is non-negative (and, unless φ(x, y) is the zero vec-
tor, positive). The third term is the dot product between φ for two
different labels, which by definition of φ is zero (see Eq (17.2)). Verify the score of ŷ, w(new) · φ(x, ŷ),

decreases after an update, as we
would want.

?This gives rise to the updated multiclass perceptron specified in
Algorithm 17.1. As with the normal perceptron, the generalization
of the multiclass perceptron increases dramatically if you do weight
averaging.

An important note is that MulticlassPerceptronTrain is actually
more powerful than suggested so far. For instance, suppose that you
have three categories, but believe that two of them are tightly related,
while the third is very different. For instance, the categories might
be {music, movies, oncology}. You can encode this relatedness by
defining a feature expansion φ that reflects this:

φ(x, music) = 〈x, 0, 0, x〉 (17.9)

φ(x, movies) = 〈0, x, 0, x〉 (17.10)

φ(x, oncology) = 〈0, 0, x, 0〉 (17.11)

This encoding is identical to the normal encoding in the first three
positions, but includes an extra copy of the features at the end,
shared between music and movies. By doing so, if the perceptron
wants to learn something common to music and movies, it can use
this final shared position. Suppose you have a hierarchy

of classes arranged in a tree.
How could you use that to
construct a feature representa-
tion. You can think of the mu-
sic/movies/oncology example as
a binary tree: the left branch of the
root splits into music and movies;
the right branch of the root is just
oncology.

?

198 a course in machine learning

17.2 Structured Perceptron

Let us now consider the sequence labeling task. In sequence labeling,
the outputs are themselves variable-length vectors. An input/output
pair (which must have the same length) might look like:

x = “ monsters eat tasty bunnies “ (17.12)

y = noun verb adj noun (17.13)

To set terminology, we will refer to the entire sequence y as the “out-
put” and a single label within y as a “label”. As before, our goal is to
learn a scoring function that scores the true output sequence y higher
than any imposter output sequence.

As before, despite the fact that y is now a vector, we can still de-
fine feature functions over the entire input/output pair. For instance,
we might want to count the number of times “monsters” has been
tagged as “noun” in a given output. Or the number of times “verb”
is followed by “noun” in an output. Both of these are features that
are likely indicative of a correct output. We might also count the num-
ber of times “tasty” has been tagged as a verb (probably a negative
feature) and the number of times two verbs are adjacent (again, prob-
ably a negative feature).

More generally, a very standard set of features would be:

• the number of times word w has been labeled with tag l, for all
words w and all syntactic tags l

• the number of times tag l is adjacent to tag l′ in the output, for all
tags l and l′

The first set of features are often called unary features, because they
talk only about the relationship between the input (sentence) and a
single (unit) label in the output sequence. The second set of features
are often called Markov features, because they talk about adjacent la-
bels in the output sequence, which is reminiscent of Markov models
which only have short term memory.

Note that for a given input x of length L (in the example, L =

4), the number of possible outputs is KL, where K is the number of
syntactic tags. This means that the number of possible outputs grows
exponentially in the length of the input. In general, we write Y(x) to
mean “the set of all possible structured outputs for the input x”. We
have just seen that |Y(x)| = Klen(x).

Despite the fact that the inputs and outputs have variable length,
the size of the feature representation is constant. If there are V words
in your vocabulary and K labels for a given word, the the number of
unary features is VK and the number of Markov features is K2, so

structured prediction 199

Algorithm 40 StructuredPerceptronTrain(D, MaxIter)
1: w ← 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) ∈ D do
4: ŷ ← argmaxŷ∈Y(x) w · φ(x, ŷ) // compute prediction
5: if ŷ 6= y then
6: w ← w + φ(x, y)− φ(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

the total number of features is K(V + K). Of course, more complex
feature representations are possible and, in general, are a good idea.
For example, it is often useful to have unary features of neighboring
words like “the number of times the word immediately preceding a
verb was ’monsters’.”

Now that we have a fixed size feature representation, we can de-
velop a perceptron-style algorithm for sequence labeling. The core
idea is the same as before. We will maintain a single weight vector w.
We will make predictions by choosing the (entire) output sequence
ŷ that maximizes a score given by w · φ(x, ŷ). And if this output se-
quence is incorrect, we will adjust the weights word the correct output
sequence y and away from the incorrect output sequence ŷ. This is
summarized in Algorithm 17.2

You may have noticed that Algorithm 17.2 for the structured per-
ceptron is identical to Algorithm 17.1, aside from the fact that in the
multiclass perceptron the argmax is over the K possible classes, while
in the structured perceptron, the argmax is over the KL possible out-
put sequences!

The only difficulty in this algorithm is in line 4:

ŷ← argmax
ŷ∈Y(x)

w · φ(x, ŷ) (17.14)

In principle, this requires you to search over KL possible output se-
quences ŷ to find the one that maximizes the dot product. Except for
very small K or very small L, this is computationally infeasible. Be-
cause of its difficulty, this is often refered to as the argmax problem
in structured prediction. Below, we consider how to solve the argmax
problem for sequences.

17.3 Argmax for Sequences

We now face an algorithmic question, not a machine learning ques-
tion: how to compute the argmax in Eq 17.14 efficiently. In general,

200 a course in machine learning

this is not possible. However, under somewhat restrictive assump-
tions about the form of our features φ, we can solve this problem effi-
ciently, by casting it as the problem of computing a maximum weight
path through a specifically constructed lattice. This is a variant of the
Viterbi algorithm for hidden Markov models, a classic example of dy-
namic programming. (Later, in Section 17.6, we will consider argmax
for more general problems.)

The key observation for sequences is that—so long as we restrict
our attention to unary features and Markov features—the feature
function φ decomposes over the input. This is easiest to see with
an example. Consider the input/output sequence from before: x =

“monsters eat tasty bunnies” and y = [noun verb adj noun]. If we
want to compute the number of times “bunnies” is tagged as “noun”
in this pair, we can do this by:

1. count the number of times “bunnies” is tagged as “noun” in the
first three words of the sentence

2. add to that the number of times “bunnies” is tagged as “noun” in
the final word

We can do a similar exercise for Markov features, like the number of
times “adj” is followed by “noun”.

However, we don’t actually need these counts. All we need for
computing the argmax sequence is the dot product between the
weights w and these counts. In particular, we can compute w · φ(x, y)
as the dot product on all-but-the-last word plus the dot product on
the last word: w · φ1:3(x, y) + w · φ4(x, y). Here, φ1:3 means “fea-
tures for everything up to and including position 3” and φ4 means
“features for position 4.”

More generally, we can write φ(x, y) = ∑L
l=1 φl(x, y), where

φl(x, y) only includes features about position l.1 In particular, we’re 1 In the case of Markov features, we
think of them as pairs that end at
position l, so “verb adj” would be the
active feature for φ3.

taking advantage of the associative law for addition:

w · φ(x, y) = w ·
L

∑
l=1

φl(x, y) decomposition of structure (17.15)

=
L

∑
l=1

w · φl(x, y) associative law (17.16)

What this means is that we can build a graph like that in Figure ??,
with one verticle slice per time step (l 1 . . . L).2 Each edge in this 2 A graph of this sort is called a trel-

lis, and sometimes a lattice in the
literature.

graph will receive a weight, constructed in such a way that if you
take a complete path through the lattice, and add up all the weights,
this will correspond exactly to w · φ(x, y).

To complete the construction, let φl(x, · · · ◦ y ◦ y′) denote the unary
features at position l together with the Markov features that end at

structured prediction 201

tasty

N

V

A
bunnies

N

V

A
eat

N

V

A
monsters

N

V

A

Figure 17.1: A picture of a trellis se-
quence labeling. At each time step l
the corresponding word can have any
of the three possible labels. Any path
through this trellis corresponds to a
unique labeling of this sentence. The
gold standard path is drawn with bold
red arrows. The highlighted edge cor-
responds to the edge between l = 2
and l = 3 for verb/adj as described
in the text. That edge has weight
w · φ3(x, · · · ◦ verb ◦ adj).

position l. These features depend only on x, y and y′, and not any of
the previous parts of the output.

For example, in the running example “monsters/noun eat/verb
tasty/adj bunnies/noun”, consider the edge between l = 2 and
l = 3 going from “verb” to “adj”. (Note: this is a “correct” edge, in
the sense that it belongs to the ground truth output.) The features
associated with this edge will be unary features about “tasty/adj”
as well as Markov features about “verb/adj”. The weight of this edge
will be exactly the total score (according to w) of those features.

Formally, consider an edge in the trellis that goes from time l −
1 to l, and transitions from y to y′. Set the weight of this edge to
exactly w · φl(x, · · · ◦ y ◦ y′). By doing so, we guarantee that the
sum of weights along any path through this lattice is exactly equal
to the score of that path. Once we have constructed the graph as
such, we can run any max-weight path algorithm to compute the
highest scoring output. For trellises, this can be computed by the
Viterbi algorithm, or by applying any of a number of path finding
algorithms for more general graphs. A complete derivation of the
dynamic program in this case is given in Section 17.7 for those who
want to implement it directly.

The main benefit of this construction is that it is guaranteed to
exactly compute the argmax output for sequences required in the
structured perceptron algorithm, efficiently. In particular, it’s run-
time is O(LK2), which is an exponential improvement on the naive
O(KL) runtime if one were to enumerate every possible output se-
quence. The algorithm can be naturally extended to handle “higher
order” Markov assumptions, where features depend on triples or
quadruples of the output. The trellis becomes larger, but the algo-
rithm remains essentially the same. In order to handle a length M
Markov features, the resulting algorithm will take O(LKM) time. In
practice, it’s rare that M > 3 is necessary or useful.

202 a course in machine learning

17.4 Structured Support Vector Machines

In Section 8.7 we saw the support vector machine as a very useful
general framework for binary classification. In this section, we will
develop a related framework for structured support vector machines.
The two main advantages of structured SVMs over the structured
perceptron are (1) it is regularized (though averaging in structured
perceptron achieves a similar effect) and (2) we can incorporate more
complex loss functions.

In particular, one suboptimal thing about the structured percep-
tron is that all errors are consider equally bad. For structured prob-
lems, we often have much more nuanced and elaborate loss functions
that we want to optimize. Even for sequence labeling, it is typically
far worse to label every word incorrectly than to just label one word
incorrectly. It is very common to use Hamming loss as a general loss
function for structured prediction. Hamming loss simply counts:
of all the predictions you made, how many were incorrect? For se-
quence labeling, it is:

`(Ham)(y, ŷ) =
L

∑
l=1

1[yl 6= ŷl] (17.17)

In order to build up to structured SVMs, recall that SVMs began with
the following optimization problem:

min
w,ξ

1
2
||w||2︸ ︷︷ ︸

large margin

+ C ∑
n

ξn︸ ︷︷ ︸
small slack

(17.18)

subj. to yn (w · xn + b) ≥ 1− ξn (∀n)

ξn ≥ 0 (∀n)

After a bit of work, we were able to reformulate this in terms of a
standard loss optimization algorithm with hinge loss:

min
w

1
2
||w||2︸ ︷︷ ︸

large margin

+C ∑
n
`(hin)(yn, w · xn + b)︸ ︷︷ ︸

small slack

(17.19)

We can do a similar derivation in the structured case. The question
is: exactly what should the slack be measuring? Our goal is for the
score of the true output y to beat the score of any imposter output
ŷ. To incorporate loss, we will say that we want the score of the true
output to beat the score of any imposter output by at least the loss
that would be suffered if we were to predict that imposter output. An
alternative view is the ranking view: we want the true output to be
ranked above any imposter by an amount at least equal to the loss.

structured prediction 203

To keep notation simple, we will write sw(x, y) to denote the score
of the pair x, y, namely w · φ(x, y). This suggests a set of constraints
of the form:

sw(x, y)− sw(x, ŷ) ≥ `(Ham)(y, ŷ)− ξŷ (∀n, ∀ŷ ∈ Y(x)) (17.20)

The rest of the optimization problem remains the same, yielding:

min
w,ξ

1
2
||w||2 + C ∑

n
∑

ŷ∈Yxn

ξn,ŷ (17.21)

subj. to sw(x, y)− sw(x, ŷ)

≥ `(Ham)(yn, ŷ)− ξn,ŷ (∀n, ∀ŷ ∈ Y(xn))

ξn,ŷ ≥ 0 (∀n, ∀ŷ ∈ Y(xn))

This optimization problem asks for a large margin and small slack,
where there is a slack very for every training example and every
possible incorrect output associated with that training example. In
general, this is way too many slack variables and way too many con-
straints!

There is a very useful, general trick we can apply. If you focus on
the first constraint, it roughly says (letting s() denote score): s(y) ≥[
s(ŷ) + `(y, ŷ)

]
for all ŷ, modulo slack. We’ll refer to the thing in

brackets as the “loss-augmented score.” But if we want to guarantee
that the score of the true y beats the loss-augmented score of all ŷ, it’s
enough to ensure that it beats the loss-augmented score of the most
confusing imposter. Namely, it is sufficient to require that s(y) ≥
maxŷ

[
s(ŷ) + `(y, ŷ)

]
, modulo slack. Expanding out the definition

of s() and adding slack back in, we can replace the exponentially
large number of constraints in Eq (17.21) with the simpler set of
constraints:

sw(xn, yn) ≥ max
ŷ∈Y(xn)

[
sw(xn, ŷ) + `(Ham)(yn, ŷ)

]
− ξn (∀n)

We can now apply the same trick as before to remove ξn from the
analysis. In particular, because ξn is constrained to be ≥ 0 and be-
cause we are trying to minimize it’s sum, we can figure out that out
the optimum, it will be the case that:

ξn = max

{
0, max

ŷ∈Y(xn)

[
sw(xn, ŷ) + `(Ham)(yn, ŷ)

]
− sw(xn, yn)

}
(17.22)

= `(s-h)(yn, xn, w) (17.23)

This value is referred to as the structured hinge loss, which we have
denoted as `(s-h)(yn, xn, w). This is because, although it is more com-
plex, it bears a striking resemlance to the hinge loss from Chapter 8.

204 a course in machine learning

In particular, if the score of the true output beats the score of every
the best imposter by at least its loss, then ξn will be zero. On the
other hand, if some imposter (plus its loss) beats the true output, the
loss scales linearly as a function of the difference. At this point, there
is nothing special about Hamming loss, so we will replace it with
some arbitrary structured loss `.

Plugging this back into the objective function of Eq (17.21), we can
write the structured SVM as an unconstrained optimization problem,
akin to Eq (17.19), as:

min
w

1
2
||w||2 + C ∑

n
`(s-h)(yn, xn, w) (17.24)

This is now in a form that we can optimize using subgradient descent
(Chapter 8) or stochastic subgradient descent (Chapter 14).

In order to compute subgradients of Eq (17.24), we need to be able
to compute subgradients of the structured hinge loss. Mathematically
this is straightforward. If the structured hinge loss on an example
(x, vy) is zero, then the gradient with respect to w is also zero. If the
structured hinge loss is positive, then the gradient is:

∇w`(s-h)(y, x, w) if the loss is > 0 (17.25)

expand definition using arbitrary structured loss `

= ∇w

{
max

ŷ∈Y(xn)

[
w · φ(xn, ŷ) + `(yn, ŷ)

]
−w · φ(xn, yn)

}
(17.26)

define ŷn to be the output that attains the maximum above, rearrange

= ∇w

{
w · φ(xn, ŷ)−w · φ(xn, yn) + `(yn, ŷ)

}
(17.27)

take gradient

= φ(xn, ŷ)− φ(xn, yn) (17.28)

Putting this together, we get the full gradient as:

∇w`(s-h)(yn, xn, w) =

{
0 if `(s-h)(yn, xn, w) = 0
φ(xn, ŷn)− φ(xn, yn) otherwise

where ŷn = argmax
ŷn∈Y(xn)

[
w · φ(xn, ŷn) + `(yn, ŷn)

]
(17.29)

The form of this gradient is very simple: it is equal to the features
of the worst imposter minus the features of the truth, unless the
truth beats all imposters, in which case it’s zero. When plugged into
stochastic subgradient descent, you end up with an update that looks
very much like the structured perceptron: if the current prediction
(ŷn) is correct, there is no gradient step. But if the current prediction
is incorrect, you step w toward the truth and away from the imposter.

structured prediction 205

Algorithm 41 StochSubGradStructSVM(D, MaxIter, λ, `)
1: w ← 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) ∈ D do
4: ŷ ← argmaxŷ∈Y(x) w · φ(x, ŷ) + `(y, ŷ) // loss-augmented prediction
5: if ŷ 6= y then
6: w ← w + φ(x, y)− φ(x, ŷ) // update weights
7: end if
8: w ← w− λ

N w // shrink weights due to regularizer
9: end for

10: end for
11: return w // return learned weights

We will consider how to compute the loss-augmented argmax in
the next section, but before that we summarize an algorithm for opti-
mizing structured SVMs using stochastic subgradient descent: Algo-
rithm 17.4. Of course there are other possible optimization strategies;
we are highlighting this one because it is nearly identical to the struc-
tured perceptron. The only differences are: (1) on line 4 you use loss-
augmented argmax instead of argmax; and (2) on line 8 the weights
are shrunk slightly corresponding to the `2 regularizer on w. (Note:
we have used λ = 1/(2C) to make the connection to linear models
clearer.)

17.5 Loss-Augmented Argmax

The challenge that arises is that we now have a more complicated
argmax problem that before. In structured perceptron, we only
needed to compute ŷn as the output that maximized its score (see
Eq 17.14). Here, we need to find the output that maximizes it score
plus it’s loss (Eq (17.29)). This optimization problem is refered to as
loss-augmented search or loss-augmented inference.

Before solving the loss-augmented inference problem, it’s worth
thinking about why it makes sense. What is ŷn? It’s the output that
has the highest score among all outputs, after adding the output’s
corresponding loss to that score. In other words, every incorrect
output gets an artificial boost to its score, equal to its loss. The loss is
serving to make imposters look even better than they really are, so if
the truth is to beat an imposter, it has to beat it by a lot. In fact, this
loss augmentation is essentially playing the role of a margin, where
the required margin scales according to the loss.

The algorithmic question, then, is how to compute ŷn. In the fully
general case, this is at least as hard as the normal argmax problem, so
we cannot expect a general solution. Moreover, even in cases where
the argmax problem is easy (like for sequences), the loss-augmented

206 a course in machine learning

argmax problem can still be difficult. In order to make it easier, we
need to assume that the loss decomposes of the input in a way that’s
consistent with the features. In particular, if the structured loss func-
tion is Hamming loss, this is often straightforward.

As a concrete example, let’s consider loss-augmented argmax for
sequences under Hamming loss. In comparison to the trellis problem
solved in Section 17.7, the only difference is that we want to reward
paths that go through incorrect nodes in the trellis! In particular, in
Figure 17.1, all of the edges that are not part of the gold standard
path—those that are thinner and grey—get a free “+1” added to their
weights. Since Hamming loss adds one to the score for any word
that’s predicted incorrectly, this means that every edge in the trellis
that leads to an incorrect node (i.e., one that does not match the gold
truth label) gets a “+1” added to its weight.

Again, consider an edge in the trellis that goes from time l − 1 to
l, and transitions from y to y′. In the non-loss-augmented, the weight
of this edge was exactly w · φl(x, · · · ◦ y ◦ y′). In the loss-augmented
cases, the weight of this edge becomes:

w · φl(x, · · · ◦ y ◦ y′)︸ ︷︷ ︸
edge score, as before

+ 1[y′ 6= yl]︸ ︷︷ ︸
+1 for mispredictions

(17.30)

Once this loss-augmented graph has been constructed, the same max-
weight path algorithm can be run to find the loss-augmented argmax
sequence.

17.6 Argmax in General

The general argmax problem for structured perceptron is the algo-
rithmic question of whether the following can be efficiently com-
puted:

ŷ← argmax
ŷ∈Y(x)

w · φ(x, ŷ) (17.31)

We have seen that if the output space Y(x) is sequences and the
only types of features are unary features and Markov features, then
this can be computed efficiently. There are a small number of other
structured output spaces and feature restrictions for which efficient
problem-specific algorithms exist:

• Binary trees, with context-free features: use the CKY algorithm

• 2d image segmentation, with adjacent-pixel features: use a form of
graph cuts

• Spanning trees, with edge-based features: use Kruskal’s algorithm
(or for directed spanning trees, use Chu-Liu/Edmonds algorithm)

structured prediction 207

These special cases are often very useful, and many problems can be
cast in one of these frameworks. However, it is often the case that you
need a more general solution.

One of the most generally useful solutions is to cast the argmax
problem as an integer linear program, or ILP. ILPs are a specific
type of mathematical program/optimization problem, in which the
objective function being optimized is linear and the constraints are
linear. However, unlike “normal” linear programs, in an ILP you are
allowed to have integer constraints and disallow fractional values.
The general form of an ILP is, for a fixed vector a:

max
z

a · z subj. to linear constraints on z (17.32)

The main point is that the constraints on z are allowed to include
constraints like z3 ∈ {0, 1}, which is considered an integer constraint.

Being able to cast your argmax problem as an ILP has the advan-
tage that there are very good, efficiently, well-engineered ILP solvers
out there in the world.3 ILPs are not a panacea though: in the worst 3 I like Gurobi best, and it’s free for

academic use. It also has a really nice
Python interface.

case, the ILP solver will be horribly inefficient. But for prototyping,
or if there are no better options, it’s a very handy technique.

Figuring out how exactly to cast your argmax problem as an ILP
can be a bit challenging. Let’s start with an example of encoding
sequence labeling with Markov features as an ILP. We first need
to decide what the variables will be. Because we need to encode
pairwise features, we will let our variables be of the form:

zl,k′ ,k = 1[label l is k and label l − 1 is k′] (17.33)

These zs will all be binary indicator variables.
Our next task is to construct the linear objective function. To do

so, we need to assign a value to al,k′ ,k in such a way that a · z will be
exactly equal to w · φ(x, y(z)), where y(z) denotes the sequence that
we can read off of the variables z. With a little thought, we arrive at:

al,k′ ,k = w · φl(x, 〈. . . , k′, k〉) (17.34)

Finally, we need to construct constaints. There are a few things that
these constraints need to enforce:

1. That all the zs are binary. That’s easy: just say zl,k′ ,k ∈ {0, 1}, for
all l, k′, k.

2. That for a given position l, there is exactly one active z. We can do
this with an equality constraint: ∑k ∑k′ zl,k′ ,k = 1 for all l.

3. That the zs are internally consistent: if the label at position 5 is
supposed to be “noun” then both z5,.,. and z6,.,. need to agree on

208 a course in machine learning

this. We can do this as: ∑k′ zl,k′ ,k = ∑k′′ zl+1,k,k′′ for all l, k. Effec-
tively what this is saying is that z5,?,verb = z6,verb,? where the “?”
means “sum over all possibilities.”

This fully specifies an ILP that you can relatively easily implement
(arguably more easily than the dynamic program in Algorithm 17.7)
and which will solve the argmax problem for you. Will it be efficient?
In this case, probably yes. Will it be as efficient as the dynamic pro-
gram? Probably not.

It takes a bit of effort and time to get used to casting optimization
problems as ILPs, and certainly not all can be, but most can and it’s a
very nice alternative.

In the case of loss-augmented search for structured SVMs (as
opposed to structured perceptron), the objective function of the ILP
will need to be modified to include terms corresponding to the loss.

17.7 Dynamic Programming for Sequences

Recall the decomposition we derived earlier:

w · φ(x, y) = w ·
L

∑
l=1

φl(x, y) decomposition of structure (17.35)

=
L

∑
l=1

w · φl(x, y) associative law (17.36)

This decomposition allows us to construct the following dynamic
program. We will compute αl,k as the score of the best possible output
prefix up to and including position l that labels the lth word with
label k. More formally:

αl,k = max
ŷ1:l−1

w · φ1:l(x, ŷ ◦ k) (17.37)

Here, ŷ is a sequence of length l − 1, and ŷ ◦ k denotes the sequence
of length l obtained by adding k onto the end. The max denotes the
fact that we are seeking the best possible prefix up to position l − 1,
and the forcing the label for position l to be k.

Before working through the details, let’s consider an example.
Suppose that we’ve computing the αs up to l = 2, and have: α2,noun =

2, α2,verb = 9, α2,adj = −1 (recall: position l = 2 is “eat”). We want
to extend this to position 3; for example, we want to compute α3,adj.
Let’s assume there’s a single unary feature here, “tasty/adj” and
three possible Markov features of the form “?:adj”. Assume these
weights are as given to the right. 4 Now, the question for α3,adj is: 4 w“tasty/adj” = 1.2

w“noun:adj” = −5
w“verb:adj” = 2.5
w“adj:adj” = 2.2

what’s the score of the best prefix that labels “tasty” as “adj”? We can
obtain this by taking the best prefix up to “eat” and then appending

structured prediction 209

each possible label. Whichever combination is best is the winner. The
relevant computation is:

α3,adj = max
{

α2,noun + w“tasty/adj” + w“noun:adj”

α2,verb + w“tasty/adj” + w“verb:adj”

α2,adj + w“tasty/adj” + w“adj:adj”

}
(17.38)

= max
{

2 + 1.2− 5, 9 + 1.2 + 2.5, −1 + 1.2 + 2.2
}

(17.39)

= max
{
− 1.8, 12.7, 2.4

}
= 12.7 (17.40)

This means that (a) the score for the prefix ending at position 3 la-
beled as adjective is 12.7, and (b) the “winning” previous label was
“verb”. We will need to record these winning previous labels so that
we can extract the best path at the end. Let’s denote by ζl,k the label
at position l − 1 that achieves the max.

From here, we can formally compute the αs recursively. The
main observation that will be necessary is that, because we have
limited ourselves to Markov features, φl+1(x, 〈y1, y2, . . . , yl , yl+1〉)
depends only on the last two terms of y, and does not depend on
y1, y2, . . . , yl−1. The full recursion is derived as:

α0,k = 0 ∀k (17.41)

ζ0,k = ∅ ∀k (17.42)

the score for any empty sequence is zero

αl+1,k = max
ŷ1:l

w · φ1:l+1(x, ŷ ◦ k) (17.43)

separate score of prefix from score of position l+1

= max
ŷ1:l

w ·
(

φ1:l(x, ŷ) + φl+1(x, ŷ ◦ k)
)

(17.44)

distributive law over dot products

= max
ŷ1:l

[
w · φ1:l(x, ŷ) + w · φl+1(x, ŷ ◦ k)

]
(17.45)

separate out final label from prefix, call it k’

= max
ŷ1:l−1

max
k′

[
w · φ1:l(x, ŷ ◦ k′) + w · φl+1(x, ŷ ◦ k′ ◦ k)

]
(17.46)

swap order of maxes, and last term doesn’t depend on prefix

= max
k′

[[
max
ŷ1:l−1

w · φ1:l(x, ŷ ◦ k′)
]

+ w · φl+1(x, 〈. . . , k′, k〉)
]

(17.47)

apply recursive definition

= max
k′

[
αl,k′ + w · φl+1(x, 〈. . . , k′, k〉)

]
(17.48)

210 a course in machine learning

Algorithm 42 ArgmaxForSequences(x, w)
1: L ← len(x)
2: αl,k ← 0, ζk,l ← 0, ∀ k = 1 . . . K, ∀l = 0 . . . L // initialize variables
3: for l = 0 . . . L-1 do
4: for k = 1 . . . K do
5: αl+1,k ← maxk′

[
αl,k′ + w · φl+1(x, 〈. . . , k′, k〉)

]
// recursion:

// here, φl+1(. . . k′, k . . .) is the set of features associated with
// output position l + 1 and two adjacent labels k′ and k at that position

6: ζl+1,k ← the k’ that achieves the maximum above // store backpointer
7: end for
8: end for
9: y ← 〈0, 0, . . . , 0〉 // initialize predicted output to L-many zeros

10: yL ← argmaxk αL,k // extract highest scoring final label
11: for l = L-1 . . . 1 do
12: yl ← ζl,yl+1

// traceback ζ based on yl+1
13: end for
14: return y // return predicted output

and record a backpointer to the k’ that achieves the max

ζl+1,k = argmax
k′

[
αl,k′ + w · φl+1(x, 〈. . . , k′, k〉)

]
(17.49)

At the end, we can take maxk αL,k as the score of the best output
sequence. To extract the final sequence, we know that the best label
for the last word is argmax αL,k. Let’s call this ŷL Once we know that,
the best previous label is ζL−1,ŷL . We can then follow a path through ζ

back to the beginning. Putting this all together gives Algorithm 17.7.
The main benefit of Algorithm 17.7 is that it is guaranteed to ex-

actly compute the argmax output for sequences required in the struc-
tured perceptron algorithm, efficiently. In particular, it’s runtime is
O(LK2), which is an exponential improvement on the naive O(KL)

runtime if one were to enumerate every possible output sequence.
The algorithm can be naturally extended to handle “higher order”
Markov assumptions, where features depend on triples or quadru-
ples of the output. The memoization becomes notationally cumber-
some, but the algorithm remains essentially the same. In order to
handle a length M Markov features, the resulting algorithm will take
O(LKM) time. In practice, it’s rare that M > 3 is necessary or useful.

In the case of loss-augmented search for structured SVMs (as
opposed to structured perceptron), we need to include the scores
coming from the loss augmentation in the dynamic program. The
only thing that changes between the standard argmax solution (Al-
gorithm 17.7, and derivation in Eq (17.48)) is that the any time an
incorrect label is used, the (loss-augmented) score increases by one.
Recall that in the non-loss-augmented case, we have the α recursion

structured prediction 211

as:

αl+1,k = max
ŷ1:l

w · φ1:l+1(x, ŷ ◦ k) (17.50)

= max
k′

[
αl,k′ + w · φl+1(x, 〈. . . , k′, k〉)

]
(17.51)

If we define α̃ to be the loss-augmented score, the corresponding
recursion is (differences highlighted in blue):

α̃l+1,k = max
ŷ1:l

w · φ1:l+1(x, ŷ ◦ k)+`(Ham)
1:l+1(y, ŷ ◦ k) (17.52)

= max
k′

[
α̃l,k′ + w · φl+1(x, 〈. . . , k′, k〉)

]
+1[k 6= yl+1] (17.53)

In other words, when computing α̃ in the loss-augmented case,
whenever the output prediction is forced to pass through an incorrect
label, the score for that cell in the dynamic program gets increased
by one. The resulting algorithm is identical to Algorithm 17.7, except
that Eq (17.53) is used for computing αs.

17.8 Further Reading

TODO

	Structured Prediction
	Multiclass Perceptron
	Structured Perceptron
	Argmax for Sequences
	Structured Support Vector Machines
	Loss-Augmented Argmax
	Argmax in General
	Dynamic Programming for Sequences
	Further Reading

