
12 | LEARNING THEORY

Dependencies:

By now, you are an expert at building learning algorithms. You
probably understand how they work, intuitively. And you under-
stand why they should generalize. However, there are several basic
questions you might want to know the answer to. Is learning always
possible? How many training examples will I need to do a good job
learning? Is my test performance going to be much worse than my
training performance? The key idea that underlies all these answer is
that simple functions generalize well.

The amazing thing is that you can actually prove strong results
that address the above questions. In this chapter, you will learn
some of the most important results in learning theory that attempt
to answer these questions. The goal of this chapter is not theory for
theory’s sake, but rather as a way to better understand why learning
models work, and how to use this theory to build better algorithms.
As a concrete example, we will see how 2-norm regularization prov-
ably leads to better generalization performance, thus justifying our
common practice!

12.1 The Role of Theory

In contrast to the quote at the start of this chapter, a practitioner
friend once said “I would happily give up a few percent perfor-
mance for an algorithm that I can understand.” Both perspectives
are completely valid, and are actually not contradictory. The second
statement is presupposing that theory helps you understand, which
hopefully you’ll find to be the case in this chapter.

Theory can serve two roles. It can justify and help understand
why common practice works. This is the “theory after” view. It can
also serve to suggest new algorithms and approaches that turn out to
work well in practice. This is the “theory before” view. Often, it turns
out to be a mix. Practitioners discover something that works surpris-
ingly well. Theorists figure out why it works and prove something
about it. And in the process, they make it better or find new algo-

Learning Objectives:
• Explain why inductive bias is

necessary.

• Define the PAC model and explain
why both the “P” and “A” are
necessary.

• Explain the relationship between
complexity measures and regulariz-
ers.

• Identify the role of complexity in
generalization.

• Formalize the relationship between
margins and complexity.

The Universe is under no obligation to make sense to you. –

Neil deGrasse Tyson

learning theory 155

rithms that more directly exploit whatever property it is that made
the theory go through.

Theory can also help you understand what’s possible and what’s
not possible. One of the first things we’ll see is that, in general, ma-
chine learning can not work. Of course it does work, so this means
that we need to think harder about what it means for learning algo-
rithms to work. By understanding what’s not possible, you can focus
our energy on things that are.

Probably the biggest practical success story for theoretical machine
learning is the theory of boosting, which you won’t actually see in
this chapter. (You’ll have to wait for Chapter 13.) Boosting is a very
simple style of algorithm that came out of theoretical machine learn-
ing, and has proven to be incredibly successful in practice. So much
so that it is one of the de facto algorithms to run when someone gives
you a new data set. In fact, in 2004, Yoav Freund and Rob Schapire
won the ACM’s Paris Kanellakis Award for their boosting algorithm
AdaBoost. This award is given for theoretical accomplishments that
have had a significant and demonstrable effect on the practice of
computing.1 1 In 2008, Corinna Cortes and Vladimir

Vapnik won it for support vector
machines.

12.2 Induction is Impossible

One nice thing about theory is that it forces you to be precise about
what you are trying to do. You’ve already seen a formal definition
of binary classification in Chapter 7. But let’s take a step back and
re-analyze what it means to learn to do binary classification.

From an algorithmic perspective, a natural question is whether
there is an “ultimate” learning algorithm, Aawesome, that solves the
Binary Classification problem above. In other words, have you been
wasting your time learning about KNN and Perceptron and decision
trees, when Aawesome is out there.

What would such an ultimate learning algorithm do? You would
like it to take in a data set D and produce a function f . No matter
what D looks like, this function f should get perfect classification on
all future examples drawn from the same distribution that produced
D.

A little bit of introspection should demonstrate that this is impos-
sible. For instance, there might be label noise in our distribution. As
a very simple example, let X = {−1,+1} (i.e., a one-dimensional,
binary distribution. Define the data distribution as:

D(〈+1〉,+1) = 0.4 D(〈−1〉,−1) = 0.4 (12.1)

D(〈+1〉,−1) = 0.1 D(〈−1〉,+1) = 0.1 (12.2)

In other words, 80% of data points in this distrubtion have x = y

156 a course in machine learning

and 20% don’t. No matter what function your learning algorithm
produces, there’s no way that it can do better than 20% error on this
data. It’s clear that if your algorithm pro-

duces a deterministic function that
it cannot do better than 20% error.
What if it produces a stochastic (aka
randomized) function?

?
Given this, it seems hopeless to have an algorithm Aawesome that

always achieves an error rate of zero. The best that we can hope is
that the error rate is not “too large.”

Unfortunately, simply weakening our requirement on the error
rate is not enough to make learning possible. The second source of
difficulty comes from the fact that the only access we have to the
data distribution is through sampling. In particular, when trying to
learn about a distribution like that in 12.1, you only get to see data
points drawn from that distribution. You know that “eventually” you
will see enough data points that your sample is representative of the
distribution, but it might not happen immediately. For instance, even
though a fair coin will come up heads only with probability 1/2, it’s
completely plausible that in a sequence of four coin flips you never
see a tails, or perhaps only see one tails.

So the second thing that we have to give up is the hope that
Aawesome will always work. In particular, if we happen to get a lousy
sample of data from D, we need to allow Aawesome to do something
completely unreasonable.

Thus, we cannot hope that Aawesome will do perfectly, every time.
We cannot even hope that it will do pretty well, all of the time. Nor
can we hope that it will do perfectly, most of the time. The best best
we can reasonably hope of Aawesome is that it it will do pretty well,
most of the time.

12.3 Probably Approximately Correct Learning

Probably Approximately Correct (PAC) learning is a formalism
of inductive learning based on the realization that the best we can
hope of an algorithm is that it does a good job (i.e., is approximately
correct), most of the time (i.e., it is probably appoximately correct).2 2 Leslie Valiant invented the notion

of PAC learning in 1984. In 2011,
he received the Turing Award, the
highest honor in computing for his
work in learning theory, computational
complexity and parallel systems.

Consider a hypothetical learning algorithm. You run it on ten dif-
ferent binary classification data sets. For each one, it comes back with
functions f1, f2, . . . , f10. For some reason, whenever you run f4 on a
test point, it crashes your computer. For the other learned functions,
their performance on test data is always at most 5% error. If this
situtation is guaranteed to happen, then this hypothetical learning
algorithm is a PAC learning algorithm. It satisfies “probably” because
it only failed in one out of ten cases, and it’s “approximate” because
it achieved low, but non-zero, error on the remainder of the cases.

This leads to the formal definition of an (ε, δ) PAC-learning algo-
rithm. In this definition, ε plays the role of measuring accuracy (in

learning theory 157

the previous example, ε = 0.05) and δ plays the role of measuring
failure (in the previous, δ = 0.1).

Definitions 1. An algorithm A is an (ε, δ)-PAC learning algorithm if, for
all distributions D: given samples from D, the probability that it returns a
“bad function” is at most δ; where a “bad” function is one with test error
rate more than ε on D.

There are two notions of efficiency that matter in PAC learning. The
first is the usual notion of computational complexity. You would prefer
an algorithm that runs quickly to one that takes forever. The second
is the notion of sample complexity: the number of examples required
for your algorithm to achieve its goals. Note that the goal of both
of these measure of complexity is to bound how much of a scarse
resource your algorithm uses. In the computational case, the resource
is CPU cycles. In the sample case, the resource is labeled examples.

Definition: An algorithm A is an efficient (ε, δ)-PAC learning al-
gorithm if it is an (ε, δ)-PAC learning algorithm whose runtime is
polynomial in 1

ε and 1
δ .

In other words, suppose that you want your algorithm to achieve
4% error rate rather than 5%. The runtime required to do so should
no go up by an exponential factor.

12.4 PAC Learning of Conjunctions

To get a better sense of PAC learning, we will start with a completely
irrelevant and uninteresting example. The purpose of this example is
only to help understand how PAC learning works.

The setting is learning conjunctions. Your data points are binary
vectors, for instance x = 〈0, 1, 1, 0, 1〉. Someone guarantees for you
that there is some boolean conjunction that defines the true labeling
of this data. For instance, x1 ∧ ¬x2 ∧ x5 (“or” is not allowed). In
formal terms, we often call the true underlying classification function
the concept. So this is saying that the concept you are trying to learn
is a conjunction. In this case, the boolean function would assign a
negative label to the example above.

Since you know that the concept you are trying to learn is a con-
junction, it makes sense that you would represent your function as
a conjunction as well. For historical reasons, the function that you
learn is often called a hypothesis and is often denoted h. However,
in keeping with the other notation in this book, we will continue to
denote it f .

Formally, the set up is as follows. There is some distribution DX

over binary data points (vectors) x = 〈x1, x2, . . . , xD〉. There is a fixed

158 a course in machine learning

concept conjunction c that we are trying to learn. There is no noise,
so for any example x, its true label is simply y = c(x).

y x1 x2 x3 x4

+1 0 0 1 1

+1 0 1 1 1

-1 1 1 0 1

Table 12.1: Data set for learning con-
junctions.

What is a reasonable algorithm in this case? Suppose that you
observe the example in Table 12.1. From the first example, we know
that the true formula cannot include the term x1. If it did, this exam-
ple would have to be negative, which it is not. By the same reason-
ing, it cannot include x2. By analogous reasoning, it also can neither
include the term ¬x3 nor the term ¬x4.

This suggests the algorithm in Algorithm 12.4, colloquially the
“Throw Out Bad Terms” algorithm. In this algorithm, you begin with
a function that includes all possible 2D terms. Note that this function
will initially classify everything as negative. You then process each
example in sequence. On a negative example, you do nothing. On
a positive example, you throw out terms from f that contradict the
given positive example. Verify that Algorithm 12.4 main-

tains an invariant that it always errs
on the side of classifying examples
negative and never errs the other
way.

?
If you run this algorithm on the data in Table 12.1, the sequence of

f s that you cycle through are:

f 0(x) = x1 ∧ ¬x1 ∧ x2 ∧ ¬x2 ∧ x3 ∧ ¬x3 ∧ x4 ∧ ¬x4 (12.3)

f 1(x) = ¬x1 ∧ ¬x2 ∧ x3 ∧ x4 (12.4)

f 2(x) = ¬x1 ∧ x3 ∧ x4 (12.5)

f 3(x) = ¬x1 ∧ x3 ∧ x4 (12.6)

The first thing to notice about this algorithm is that after processing
an example, it is guaranteed to classify that example correctly. This
observation requires that there is no noise in the data.

The second thing to notice is that it’s very computationally ef-
ficient. Given a data set of N examples in D dimensions, it takes
O(ND) time to process the data. This is linear in the size of the data
set.

However, in order to be an efficient (ε, δ)-PAC learning algorithm,
you need to be able to get a bound on the sample complexity of this
algorithm. Sure, you know that its run time is linear in the number
of example N. But how many examples N do you need to see in order
to guarantee that it achieves an error rate of at most ε (in all but δ-
many cases)? Perhaps N has to be gigantic (like 22D/ε

) to (probably)
guarantee a small error.

The goal is to prove that the number of samples N required to
(probably) achieve a small error is not-too-big. The general proof
technique for this has essentially the same flavor as almost every PAC
learning proof around. First, you define a “bad thing.” In this case,
a “bad thing” is that there is some term (say ¬x8) that should have
been thrown out, but wasn’t. Then you say: well, bad things happen.
Then you notice that if this bad thing happened, you must not have

learning theory 159

Algorithm 31 BinaryConjunctionTrain(D)
1: f ← x1 ∧ ¬x1 ∧ x2 ∧ ¬x2 ∧ · · · ∧ xD ∧ ¬xD // initialize function
2: for all positive examples (x,+1) in D do
3: for d = 1 . . . D do
4: if xd = 0 then
5: f ← f without term “xd”
6: else
7: f ← f without term “¬xd”
8: end if
9: end for

10: end for
11: return f

seen any positive training examples with x8 = 0. So example with
x8 = 0 must have low probability (otherwise you would have seen
them). So bad things must not be that common.

Theorem 14. With probability at least (1− δ): Algorithm 12.4 requires at
most N = . . . examples to achieve an error rate ≤ ε.

Proof of Theorem 14. Let c be the concept you are trying to learn and
let D be the distribution that generates the data.

A learned function f can make a mistake if it contains any term t
that is not in c. There are initially 2D many terms in f , and any (or
all!) of them might not be in c. We want to ensure that the probability
that f makes an error is at most ε. It is sufficient to ensure that

For a term t (e.g., ¬x5), we say that t “negates” an example x if
t(x) = 0. Call a term t “bad” if (a) it does not appear in c and (b) has
probability at least ε/2D of appearing (with respect to the unknown
distribution D over data points).

First, we show that if we have no bad terms left in f , then f has an
error rate at most ε.

We know that f contains at most 2D terms, since is begins with 2D
terms and throws them out.

The algorithm begins with 2D terms (one for each variable and
one for each negated variable). Note that f will only make one type
of error: it can call positive examples negative, but can never call a
negative example positive. Let c be the true concept (true boolean
formula) and call a term “bad” if it does not appear in c. A specific
bad term (e.g., ¬x5) will cause f to err only on positive examples
that contain a corresponding bad value (e.g., x5 = 1). TODO... finish
this

What we’ve shown in this theorem is that: if the true underly-
ing concept is a boolean conjunction, and there is no noise, then the
“Throw Out Bad Terms” algorithm needs N ≤ . . . examples in order

160 a course in machine learning

to learn a boolean conjunction that is (1− δ)-likely to achieve an er-
ror of at most ε. That is to say, that the sample complexity of “Throw
Out Bad Terms” is Moreover, since the algorithm’s runtime is
linear in N, it is an efficient PAC learning algorithm.

12.5 Occam’s Razor: Simple Solutions Generalize

The previous example of boolean conjunctions is mostly just a warm-
up exercise to understand PAC-style proofs in a concrete setting.
In this section, you get to generalize the above argument to a much
larger range of learning problems. We will still assume that there is
no noise, because it makes the analysis much simpler. (Don’t worry:
noise will be added eventually.)

William of Occam (c. 1288 – c. 1348) was an English friar and
philosopher is is most famous for what later became known as Oc-
cam’s razor and popularized by Bertrand Russell. The principle ba-
sically states that you should only assume as much as you need. Or,
more verbosely, “if one can explain a phenomenon without assuming
this or that hypothetical entity, then there is no ground for assuming
it i.e. that one should always opt for an explanation in terms of the
fewest possible number of causes, factors, or variables.” What Occam
actually wrote is the quote that began this chapter.

In a machine learning context, a reasonable paraphrase is “simple
solutions generalize well.” In other words, you have 10, 000 features
you could be looking at. If you’re able to explain your predictions
using just 5 of them, or using all 10, 000 of them, then you should just
use the 5.

The Occam’s razor theorem states that this is a good idea, theo-
retically. It essentially states that if you are learning some unknown
concept, and if you are able to fit your training data perfectly, but you
don’t need to resort to a huge class of possible functions to do so,
then your learned function will generalize well. It’s an amazing theo-
rem, due partly to the simplicity of its proof. In some ways, the proof
is actually easier than the proof of the boolean conjunctions, though it
follows the same basic argument.

In order to state the theorem explicitly, you need to be able to
think about a hypothesis class. This is the set of possible hypotheses
that your algorithm searches through to find the “best” one. In the
case of the boolean conjunctions example, the hypothesis class, H,
is the set of all boolean formulae over D-many variables. In the case
of a perceptron, your hypothesis class is the set of all possible linear
classifiers. The hypothesis class for boolean conjunctions is finite; the
hypothesis class for linear classifiers is infinite. For Occam’s razor, we
can only work with finite hypothesis classes.

learning theory 161

Theorem 15 (Occam’s Bound). Suppose A is an algorithm that learns
a function f from some finite hypothesis class H. Suppose the learned
function always gets zero error on the training data. Then, the sample com-
plexity of f is at most log |H|.

TODO COMMENTS

Proof of Theorem 15. TODO

This theorem applies directly to the “Throw Out Bad Terms” algo-
rithm, since (a) the hypothesis class is finite and (b) the learned func-
tion always achieves zero error on the training data. To apply Oc-
cam’s Bound, you need only compute the size of the hypothesis class
H of boolean conjunctions. You can compute this by noticing that
there are a total of 2D possible terms in any formula in H. Moreover,
each term may or may not be in a formula. So there are 22D = 4D

possible formulae; thus, |H| = 4D. Applying Occam’s Bound, we see
that the sample complexity of this algorithm is N ≤

Of course, Occam’s Bound is general enough to capture other
learning algorithms as well. In particular, it can capture decision
trees! In the no-noise setting, a decision tree will always fit the train-
ing data perfectly. The only remaining difficulty is to compute the
size of the hypothesis class of a decision tree learner.

Figure 12.1: thy:dt: picture of full
decision tree

For simplicity’s sake, suppose that our decision tree algorithm
always learns complete trees: i.e., every branch from root to leaf
is length D. So the number of split points in the tree (i.e., places
where a feature is queried) is 2D−1. (See Figure 12.1.) Each split
point needs to be assigned a feature: there D-many choices here.
This gives D2D−1 trees. The last thing is that there are 2D leaves
of the tree, each of which can take two possible values, depending
on whether this leaf is classified as +1 or −1: this is 2×2D = 2D+1

possibilities. Putting this all togeter gives a total number of trees
|H| = D2D−12D+1 = D22D = D4D. Applying Occam’s Bound, we see
that TODO examples is enough to learn a decision tree!

12.6 Complexity of Infinite Hypothesis Spaces

Occam’s Bound is a fantastic result for learning over finite hypothesis
spaces. Unfortunately, it is completely useless when |H| = ∞. This is
because the proof works by using each of the N training examples to
“throw out” bad hypotheses until only a small number are left. But if
|H| = ∞, and you’re throwing out a finite number at each step, there
will always be an infinite number remaining.

This means that, if you want to establish sample complexity results
for infinite hypothesis spaces, you need some new way of measuring

162 a course in machine learning

their “size” or “complexity.” A prototypical way of doing this is to
measure the complexity of a hypothesis class as the number of different
things it can do.

As a silly example, consider boolean conjunctions again. Your
input is a vector of binary features. However, instead of representing
your hypothesis as a boolean conjunction, you choose to represent
it as a conjunction of inequalities. That is, instead of writing x1 ∧
¬x2 ∧ x5, you write [x1 > 0.2] ∧ [x2 < 0.77] ∧ [x5 < π/4]. In this
representation, for each feature, you need to choose an inequality
(< or >) and a threshold. Since the thresholds can be arbitrary real
values, there are now infinitely many possibilities: |H| = 2D×∞ = ∞.
However, you can immediately recognize that on binary features,
there really is no difference between [x2 < 0.77] and [x2 < 0.12] and
any other number of infinitely many possibilities. In other words,
even though there are infinitely many hypotheses, there are only finitely
many behaviors.

Figure 12.2: thy:vcex: figure with three
and four examples

The Vapnik-Chernovenkis dimension (or VC dimension) is a
classic measure of complexity of infinite hypothesis classes based on
this intuition3. The VC dimension is a very classification-oriented no-

3 Yes, this is the same Vapnik who
is credited with the creation of the
support vector machine.

tion of complexity. The idea is to look at a finite set of unlabeled ex-
amples, such as those in Figure 12.2. The question is: no matter how
these points were labeled, would we be able to find a hypothesis that
correctly classifies them. The idea is that as you add more points,
being able to represent an arbitrary labeling becomes harder and
harder. For instance, regardless of how the three points are labeled,
you can find a linear classifier that agrees with that classification.
However, for the four points, there exists a labeling for which you
cannot find a perfect classifier. The VC dimension is the maximum
number of points for which you can always find such a classifier. What is that labeling? What is it’s

name??You can think of VC dimension as a game between you and an
adversary. To play this game, you choose K unlabeled points however
you want. Then your adversary looks at those K points and assigns
binary labels to them them however they want. You must then find
a hypothesis (classifier) that agrees with their labeling. You win if
you can find such a hypothesis; they win if you cannot. The VC
dimension of your hypothesis class is the maximum number of points
K so that you can always win this game. This leads to the following
formal definition, where you can interpret there exists as your move
and for all as adversary’s move.

Definitions 2. For data drawn from some space X , the VC dimension of
a hypothesis space H over X is the maximal K such that: there exists a set
X ⊆ X of size |X| = K, such that for all binary labelings of X, there exists
a function f ∈ H that matches this labeling.

learning theory 163

In general, it is much easier to show that the VC dimension is at
least some value; it is much harder to show that it is at most some
value. For example, following on the example from Figure 12.2, the
image of three points (plus a little argumentation) is enough to show
that the VC dimension of linear classifiers in two dimension is at least
three.

To show that the VC dimension is exactly three it suffices to show
that you cannot find a set of four points such that you win this game
against the adversary. This is much more difficult. In the proof that
the VC dimension is at least three, you simply need to provide an
example of three points, and then work through the small number of
possible labelings of that data. To show that it is at most three, you
need to argue that no matter what set of four point you pick, you
cannot win the game.

12.7 Further Reading

TODO

	Learning Theory
	The Role of Theory
	Induction is Impossible
	Probably Approximately Correct Learning
	PAC Learning of Conjunctions
	Occam's Razor: Simple Solutions Generalize
	Complexity of Infinite Hypothesis Spaces
	Further Reading

