
10 | NEURAL NETWORKS

Dependencies:

The first learning models you learned about (decision trees
and nearest neighbor models) created complex, non-linear decision
boundaries. We moved from there to the perceptron, perhaps the
most classic linear model. At this point, we will move back to non-
linear learning models, but using all that we have learned about
linear learning thus far.

This chapter presents an extension of perceptron learning to non-
linear decision boundaries, taking the biological inspiration of neu-
rons even further. In the perceptron, we thought of the input data
point (e.g., an image) as being directly connected to an output (e.g.,
label). This is often called a single-layer network because there is one
layer of weights. Now, instead of directly connecting the inputs to
the outputs, we will insert a layer of “hidden” nodes, moving from
a single-layer network to a multi-layer network. But introducing
a non-linearity at inner layers, this will give us non-linear decision
boundaires. In fact, such networks are able to express almost any
function we want, not just linear functions. The trade-off for this flex-
ibility is increased complexity in parameter tuning and model design.

10.1 Bio-inspired Multi-Layer Networks

One of the major weaknesses of linear models, like perceptron and
the regularized linear models from the previous chapter, is that they
are linear! Namely, they are unable to learn arbitrary decision bound-
aries. In contrast, decision trees and KNN could learn arbitrarily
complicated decision boundaries.

Figure 10.1: picture of a two-layer
network with 5 inputs and two hidden
units

One approach to doing this is to chain together a collection of
perceptrons to build more complex neural networks. An example of
a two-layer network is shown in Figure 10.1. Here, you can see five
inputs (features) that are fed into two hidden units. These hidden
units are then fed in to a single output unit. Each edge in this figure
corresponds to a different weight. (Even though it looks like there are
three layers, this is called a two-layer network because we don’t count

Learning Objectives:
• Explain the biological inspiration for

multi-layer neural networks.

• Construct a two-layer network that
can solve the XOR problem.

• Implement the back-propogation
algorithm for training multi-layer
networks.

• Explain the trade-off between depth
and breadth in network structure.

• Contrast neural networks with ra-
dial basis functions with k-nearest
neighbor learning.

TODO –

130 a course in machine learning

the inputs as a real layer. That is, it’s two layers of trained weights.)
Prediction with a neural network is a straightforward generaliza-

tion of prediction with a perceptron. First you compute activations
of the nodes in the hidden unit based on the inputs and the input
weights. Then you compute activations of the output unit given the
hidden unit activations and the second layer of weights.

The only major difference between this computation and the per-
ceptron computation is that the hidden units compute a non-linear
function of their inputs. This is usually called the activation function
or link function. More formally, if wi,d is the weights on the edge
connecting input d to hidden unit i, then the activation of hidden unit
i is computed as:

hi = f (wi · x) (10.1)

Where f is the link function and wi refers to the vector of weights
feeding in to node i.

One example link function is the sign function. That is, if the
incoming signal is negative, the activation is −1. Otherwise the
activation is +1. This is a potentially useful activiation function,
but you might already have guessed the problem with it: it is non-
differentiable.

Figure 10.2: picture of sign versus tanh

EXPLAIN BIAS!!!
A more popular link function is the hyperbolic tangent function,

tanh. A comparison between the sign function and the tanh function
is in Figure 10.2. As you can see, it is a reasonable approximation
to the sign function, but is convenient in that it is differentiable.1

1 It’s derivative is just 1− tanh2(x).
Because it looks like an “S” and because the Greek character for “S”
is “Sigma,” such functions are usually called sigmoid functions.

Assuming for now that we are using tanh as the link function, the
overall prediction made by a two-layer network can be computed
using Algorithm 10.1. This function takes a matrix of weights W
corresponding to the first layer weights and a vector of weights v cor-
responding to the second layer. You can write this entire computation
out in one line as:

ŷ = ∑
i

vi tanh(wi · x̂) (10.2)

= v · tanh(Wx̂) (10.3)

Where the second line is short hand assuming that tanh can take a
vector as input and product a vector as output. Is it necessary to use a link function

at all? What would happen if you
just used the identify function as a
link?

?

neural networks 131

Algorithm 25 TwoLayerNetworkPredict(W, v, x̂)
1: for i = 1 to number of hidden units do
2: hi ← tanh(wi · x̂) // compute activation of hidden unit i
3: end for
4: return v · h // compute output unit

y x0 x1 x2

+1 +1 +1 +1

+1 +1 -1 -1
-1 +1 +1 -1
-1 +1 -1 +1

Table 10.1: Small XOR data set.

The claim is that two-layer neural networks are more expressive
than single layer networks (i.e., perceptrons). To see this, you can
construct a very small two-layer network for solving the XOR prob-
lem. For simplicity, suppose that the data set consists of four data
points, given in Table 10.1. The classification rule is that y = +1 if an
only if x1 = x2, where the features are just ±1.

You can solve this problem using a two layer network with two
hidden units. The key idea is to make the first hidden unit compute
an “or” function: x1 ∨ x2. The second hidden unit can compute an
“and” function: x1 ∧ x2. The the output can combine these into a
single prediction that mimics XOR. Once you have the first hidden
unit activate for “or” and the second for “and,” you need only set the
output weights as −2 and +1, respectively. Verify that these output weights

will actually give you XOR.?To achieve the “or” behavior, you can start by setting the bias to
−0.5 and the weights for the two “real” features as both being 1. You
can check for yourself that this will do the “right thing” if the link
function were the sign function. Of course it’s not, it’s tanh. To get
tanh to mimic sign, you need to make the dot product either really
really large or really really small. You can accomplish this by set-
ting the bias to −500, 000 and both of the two weights to 1, 000, 000.
Now, the activation of this unit will be just slightly above −1 for
x = 〈−1,−1〉 and just slightly below +1 for the other three examples. This shows how to create an “or”

function. How can you create an
“and” function?

?At this point you’ve seen that one-layer networks (aka percep-
trons) can represent any linear function and only linear functions.
You’ve also seen that two-layer networks can represent non-linear
functions like XOR. A natural question is: do you get additional
representational power by moving beyond two layers? The answer
is partially provided in the following Theorem, due originally to
George Cybenko for one particular type of link function, and ex-
tended later by Kurt Hornik to arbitrary link functions.

Theorem 10 (Two-Layer Networks are Universal Function Approx-
imators). Let F be a continuous function on a bounded subset of D-
dimensional space. Then there exists a two-layer neural network F̂ with a
finite number of hidden units that approximate F arbitrarily well. Namely,
for all x in the domain of F,

∣∣F(x)− F̂(x)
∣∣ < ε.

Or, in colloquial terms “two-layer networks can approximate any

132 a course in machine learning

function.”
This is a remarkable theorem. Practically, it says that if you give

me a function F and some error tolerance parameter ε, I can construct
a two layer network that computes F. In a sense, it says that going
from one layer to two layers completely changes the representational
capacity of your model.

When working with two-layer networks, the key question is: how
many hidden units should I have? If your data is D dimensional
and you have K hidden units, then the total number of parameters
is (D + 2)K. (The first +1 is from the bias, the second is from the
second layer of weights.) Following on from the heuristic that you
should have one to two examples for each parameter you are trying
to estimate, this suggests a method for choosing the number of hid-
den units as roughly bN

D c. In other words, if you have tons and tons
of examples, you can safely have lots of hidden units. If you only
have a few examples, you should probably restrict the number of
hidden units in your network.

The number of units is both a form of inductive bias and a form
of regularization. In both view, the number of hidden units controls
how complex your function will be. Lots of hidden units⇒ very
complicated function. As the number increases, training performance
continues to get better. But at some point, test performance gets
worse because the network has overfit the data.

10.2 The Back-propagation Algorithm

The back-propagation algorithm is a classic approach to training
neural networks. Although it was not originally seen this way, based
on what you know from the last chapter, you can summarize back-
propagation as:

back-propagation = gradient descent + chain rule (10.4)

More specifically, the set up is exactly the same as before. You are
going to optimize the weights in the network to minimize some ob-
jective function. The only difference is that the predictor is no longer
linear (i.e., ŷ = w · x + b) but now non-linear (i.e., v · tanh(Wx̂)).
The only question is how to do gradient descent on this more compli-
cated objective.

For now, we will ignore the idea of regularization. This is for two
reasons. The first is that you already know how to deal with regular-
ization, so everything you’ve learned before applies. The second is
that historically, neural networks have not been regularized. Instead,
people have used early stopping as a method for controlling overfit-
ting. Presently, it’s not obvious which is a better solution: both are

neural networks 133

valid options.
To be completely explicit, we will focus on optimizing squared

error. Again, this is mostly for historic reasons. You could easily
replace squared error with your loss function of choice. Our overall
objective is:

min
W,v

∑
n

1
2

(
yn −∑

i
vi f (wi · xn)

)2

(10.5)

Here, f is some link function like tanh.
The easy case is to differentiate this with respect to v: the weights

for the output unit. Without even doing any math, you should be
able to guess what this looks like. The way to think about it is that
from vs perspective, it is just a linear model, attempting to minimize
squared error. The only “funny” thing is that its inputs are the activa-
tions h rather than the examples x. So the gradient with respect to v
is just as for the linear case.

To make things notationally more convenient, let en denote the
error on the nth example (i.e., the blue term above), and let hn denote
the vector of hidden unit activations on that example. Then:

∇v = −∑
n

enhn (10.6)

This is exactly like the linear case. One way of interpreting this is:
how would the output weights have to change to make the prediction
better? This is an easy question to answer because they can easily
measure how their changes affect the output.

The more complicated aspect to deal with is the weights corre-
sponding to the first layer. The reason this is difficult is because the
weights in the first layer aren’t necessarily trying to produce specific
values, say 0 or 5 or −2.1. They are simply trying to produce acti-
vations that get fed to the output layer. So the change they want to
make depends crucially on how the output layer interprets them.

Thankfully, the chain rule of calculus saves us. Ignoring the sum
over data points, we can compute:

L(W) =
1
2

(
y−∑

i
vi f (wi · x)

)2

(10.7)

∂L
∂wi

=
∂L
∂ fi

∂ fi
∂wi

(10.8)

∂L
∂ fi

= −
(

y−∑
i

vi f (wi · x)
)

vi = −evi (10.9)

∂ fi
∂wi

= f ′(wi · x)x (10.10)

134 a course in machine learning

Algorithm 26 TwoLayerNetworkTrain(D, η, K, MaxIter)
1: W← D×K matrix of small random values // initialize input layer weights
2: v ← K-vector of small random values // initialize output layer weights
3: for iter = 1 . . . MaxIter do
4: G← D×K matrix of zeros // initialize input layer gradient
5: g ← K-vector of zeros // initialize output layer gradient
6: for all (x,y) ∈ D do
7: for i = 1 to K do
8: ai ← wi · x̂
9: hi ← tanh(ai) // compute activation of hidden unit i

10: end for
11: ŷ ← v · h // compute output unit
12: e ← y− ŷ // compute error
13: g ← g − eh // update gradient for output layer
14: for i = 1 to K do
15: Gi ← Gi − evi(1− tanh2(ai))x // update gradient for input layer
16: end for
17: end for
18: W← W− ηG // update input layer weights
19: v ← v− ηg // update output layer weights
20: end for
21: return W, v

Putting this together, we get that the gradient with respect to wi is:

∇wi = −evi f ′(wi · x)x (10.11)

Intuitively you can make sense of this. If the overall error of the
predictor (e) is small, you want to make small steps. If vi is small
for hidden unit i, then this means that the output is not particularly
sensitive to the activation of the ith hidden unit. Thus, its gradient
should be small. If vi flips sign, the gradient at wi should also flip
signs. The name back-propagation comes from the fact that you
propagate gradients backward through the network, starting at the
end.

The complete instantiation of gradient descent for a two layer
network with K hidden units is sketched in Algorithm 10.2. Note that
this really is exactly a gradient descent algorithm; the only different is
that the computation of the gradients of the input layer is moderately
complicated. What would happen to this algo-

rithm if you wanted to optimize
exponential loss instead of squared
error? What if you wanted to add in
weight regularization?

?
As a bit of practical advice, implementing the back-propagation

algorithm can be a bit tricky. Sign errors often abound. A useful trick
is first to keep W fixed and work on just training v. Then keep v
fixed and work on training W. Then put them together.

If you like matrix calculus, derive
the same algorithm starting from
Eq (10.3).

?

neural networks 135

10.3 Initialization and Convergence of Neural Networks

Based on what you know about linear models, you might be tempted
to initialize all the weights in a neural network to zero. You might
also have noticed that in Algorithm 10.2, this is not what’s done:
they’re initialized to small random values. The question is why?

The answer is because an initialization of W = 0 and v = 0 will
lead to “uninteresting” solutions. In other words, if you initialize the
model in this way, it will eventually get stuck in a bad local optimum.
To see this, first realize that on any example x, the activation hi of the
hidden units will all be zero since W = 0. This means that on the first
iteration, the gradient on the output weights (v) will be zero, so they
will stay put. Furthermore, the gradient w1,d for the dth feature on
the ith unit will be exactly the same as the gradient w2,d for the same
feature on the second unit. This means that the weight matrix, after
a gradient step, will change in exactly the same way for every hidden
unit. Thinking through this example for iterations 2 . . . , the values of
the hidden units will always be exactly the same, which means that
the weights feeding in to any of the hidden units will be exactly the
same. Eventually the model will converge, but it will converge to a
solution that does not take advantage of having access to the hidden
units.

This shows that neural networks are sensitive to their initialization.
In particular, the function that they optimize is non-convex, meaning
that it might have plentiful local optima. (One of which is the trivial
local optimum described in the preceding paragraph.) In a sense,
neural networks must have local optima. Suppose you have a two
layer network with two hidden units that’s been optimized. You have
weights w1 from inputs to the first hidden unit, weights w2 from in-
puts to the second hidden unit and weights (v1, v2) from the hidden
units to the output. If I give you back another network with w1 and
w2 swapped, and v1 and v2 swapped, the network computes exactly
the same thing, but with a markedly different weight structure. This
phenomena is known as symmetric modes (“mode” referring to an
optima) meaning that there are symmetries in the weight space. It
would be one thing if there were lots of modes and they were all
symmetric: then finding one of them would be as good as finding
any other. Unfortunately there are additional local optima that are
not global optima.

Figure 10.3: convergence of randomly
initialized networks

Random initialization of the weights of a network is a way to
address both of these problems. By initializing a network with small
random weights (say, uniform between −0.1 and 0.1), the network is
unlikely to fall into the trivial, symmetric local optimum. Moreover,
by training a collection of networks, each with a different random

136 a course in machine learning

initialization, you can often obtain better solutions that with just
one initialization. In other words, you can train ten networks with
different random seeds, and then pick the one that does best on held-
out data. Figure 10.3 shows prototypical test-set performance for ten
networks with different random initialization, plus an eleventh plot
for the trivial symmetric network initialized with zeros.

One of the typical complaints about neural networks is that they
are finicky. In particular, they have a rather large number of knobs to
tune:

1. The number of layers

2. The number of hidden units per layer

3. The gradient descent learning rate η

4. The initialization

5. The stopping iteration or weight regularization

The last of these is minor (early stopping is an easy regularization
method that does not require much effort to tune), but the others
are somewhat significant. Even for two layer networks, having to
choose the number of hidden units, and then get the learning rate
and initialization “right” can take a bit of work. Clearly it can be
automated, but nonetheless it takes time.

Another difficulty of neural networks is that their weights can
be difficult to interpret. You’ve seen that, for linear networks, you
can often interpret high weights as indicative of positive examples
and low weights as indicative of negative examples. In multilayer
networks, it becomes very difficult to try to understand what the
different hidden units are doing.

10.4 Beyond Two Layers

Figure 10.4: multi-layer network

The definition of neural networks and the back-propagation algo-
rithm can be generalized beyond two layers to any arbitrary directed
acyclic graph. In practice, it is most common to use a layered net-
work like that shown in Figure 10.4 unless one has a very strong
reason (aka inductive bias) to do something different. However, the
view as a directed graph sheds a different sort of insight on the back-
propagation algorithm.

Figure 10.5: DAG network

Suppose that your network structure is stored in some directed
acyclic graph, like that in Figure 10.5. We index nodes in this graph
as u, v. The activation before applying non-linearity at a node is au

and after non-linearity is hu. The graph has a single sink, which is
the output node y with activation ay (no non-linearity is performed

neural networks 137

Algorithm 27 ForwardPropagation(x)
1: for all input nodes u do
2: hu ← corresponding feature of x
3: end for
4: for all nodes v in the network whose parent’s are computed do
5: av ← ∑u∈par(v) w(u,v)hu
6: hv ← tanh(av)

7: end for
8: return ay

Algorithm 28 BackPropagation(x, y)
1: run ForwardPropagation(x) to compute activations
2: ey ← y− ay // compute overall network error
3: for all nodes v in the network whose error ev is computed do
4: for all u ∈ par(v) do
5: gu,v ← −evhu // compute gradient of this edge
6: eu ← eu + evwu,v(1− tanh2(au)) // compute the “error” of the parent node
7: end for
8: end for
9: return all gradients ge

on the output unit). The graph has D-many inputs (i.e., nodes with
no parent), whose activations hu are given by an input example. An
edge (u, v) is from a parent to a child (i.e., from an input to a hidden
unit, or from a hidden unit to the sink). Each edge has a weight wu,v.
We say that par(u) is the set of parents of u.

There are two relevant algorithms: forward-propagation and back-
propagation. Forward-propagation tells you how to compute the
activation of the sink y given the inputs. Back-propagation computes
derivatives of the edge weights for a given input.

Figure 10.6: picture of forward prop

The key aspect of the forward-propagation algorithm is to iter-
atively compute activations, going deeper and deeper in the DAG.
Once the activations of all the parents of a node u have been com-
puted, you can compute the activation of node u. This is spelled out
in Algorithm 10.4. This is also explained pictorially in Figure 10.6.

Figure 10.7: picture of back prop

Back-propagation (see Algorithm 10.4) does the opposite: it com-
putes gradients top-down in the network. The key idea is to compute
an error for each node in the network. The error at the output unit is
the “true error.” For any input unit, the error is the amount of gradi-
ent that we see coming from our children (i.e., higher in the network).
These errors are computed backwards in the network (hence the
name back-propagation) along with the gradients themselves. This is
also explained pictorially in Figure 10.7.

Given the back-propagation algorithm, you can directly run gradi-
ent descent, using it as a subroutine for computing the gradients.

138 a course in machine learning

10.5 Breadth versus Depth

At this point, you’ve seen how to train two-layer networks and how
to train arbitrary networks. You’ve also seen a theorem that says
that two-layer networks are universal function approximators. This
begs the question: if two-layer networks are so great, why do we care
about deeper networks?

To understand the answer, we can borrow some ideas from CS
theory, namely the idea of circuit complexity. The goal is to show
that there are functions for which it might be a “good idea” to use a
deep network. In other words, there are functions that will require a
huge number of hidden units if you force the network to be shallow,
but can be done in a small number of units if you allow it to be deep.
The example that we’ll use is the parity function which, ironically
enough, is just a generalization of the XOR problem. The function is
defined over binary inputs as:

parity(x) = ∑
d

xd mod 2 (10.12)

=

{
1 if the number of 1s in x is odd
0 if the number of 1s in x is even

(10.13)

Figure 10.8: nnet:paritydeep: deep
function for computing parity

It is easy to define a circuit of depth O(log2 D) with O(D)-many
gates for computing the parity function. Each gate is an XOR, ar-
ranged in a complete binary tree, as shown in Figure 10.8. (If you
want to disallow XOR as a gate, you can fix this by allowing the
depth to be doubled and replacing each XOR with an AND, OR and
NOT combination, like you did at the beginning of this chapter.)

This shows that if you are allowed to be deep, you can construct a
circuit with that computes parity using a number of hidden units that
is linear in the dimensionality. So can you do the same with shallow
circuits? The answer is no. It’s a famous result of circuit complexity
that parity requires exponentially many gates to compute in constant
depth. The formal theorem is below:

Theorem 11 (Parity Function Complexity). Any circuit of depth K <

log2 D that computes the parity function of D input bits must contain OeD

gates.

This is a very famous result because it shows that constant-depth
circuits are less powerful that deep circuits. Although a neural net-
work isn’t exactly the same as a circuit, the is generally believed that
the same result holds for neural networks. At the very least, this
gives a strong indication that depth might be an important considera-
tion in neural networks. What is it about neural networks

that makes it so that the theorem
about circuits does not apply di-
rectly?

?One way of thinking about the issue of breadth versus depth has
to do with the number of parameters that need to be estimated. By

neural networks 139

the heuristic that you need roughly one or two examples for every
parameter, a deep model could potentially require exponentially
fewer examples to train than a shallow model!

This now flips the question: if deep is potentially so much better,
why doesn’t everyone use deep networks? There are at least two
answers. First, it makes the architecture selection problem more
significant. Namely, when you use a two-layer network, the only
hyperparameter to choose is how many hidden units should go in
the middle layer. When you choose a deep network, you need to
choose how many layers, and what is the width of all those layers.
This can be somewhat daunting.

A second issue has to do with training deep models with back-
propagation. In general, as back-propagation works its way down
through the model, the sizes of the gradients shrink. You can work
this out mathematically, but the intuition is simpler. If you are the
beginning of a very deep network, changing one single weight is
unlikely to have a significant effect on the output, since it has to
go through so many other units before getting there. This directly
implies that the derivatives are small. This, in turn, means that back-
propagation essentially never moves far from its initialization when
run on very deep networks. While these small derivatives might

make training difficult, they might
be good for other reasons: what
reasons?

?Finding good ways to train deep networks is an active research
area. There are two general strategies. The first is to attempt to ini-
tialize the weights better, often by a layer-wise initialization strategy.
This can be often done using unlabeled data. After this initializa-
tion, back-propagation can be run to tweak the weights for whatever
classification problem you care about. A second approach is to use a
more complex optimization procedure, rather than gradient descent.
You will learn about some such procedures later in this book.

10.6 Basis Functions

At this point, we’ve seen that: (a) neural networks can mimic linear
functions and (b) they can learn more complex functions. A rea-
sonable question is whether they can mimic a KNN classifier, and
whether they can do it efficiently (i.e., with not-too-many hidden
units).

A natural way to train a neural network to mimic a KNN classifier
is to replace the sigmoid link function with a radial basis function
(RBF). In a sigmoid network (i.e., a network with sigmoid links),
the hidden units were computed as hi = tanh(wi, x·). In an RBF
network, the hidden units are computed as:

hi = exp
[
−γi ||wi − x||2

]
(10.14)

140 a course in machine learning

Figure 10.9: nnet:rbfpicture: a one-D
picture of RBF bumps

Figure 10.10: nnet:unitsymbols: picture
of nnet with sigmoid/rbf units

In other words, the hidden units behave like little Gaussian “bumps”
centered around locations specified by the vectors wi. A one-dimensional
example is shown in Figure 10.9. The parameter γi specifies the width
of the Gaussian bump. If γi is large, then only data points that are
really close to wi have non-zero activations. To distinguish sigmoid
networks from RBF networks, the hidden units are typically drawn
with sigmoids or with Gaussian bumps, as in Figure 10.10.

Training RBF networks involves finding good values for the Gas-
sian widths, γi, the centers of the Gaussian bumps, wi and the con-
nections between the Gaussian bumps and the output unit, v. This
can all be done using back-propagation. The gradient terms for v re-
main unchanged from before, the the derivates for the other variables
differ (see Exercise ??).

One of the big questions with RBF networks is: where should
the Gaussian bumps be centered? One can, of course, apply back-
propagation to attempt to find the centers. Another option is to spec-
ify them ahead of time. For instance, one potential approach is to
have one RBF unit per data point, centered on that data point. If you
carefully choose the γs and vs, you can obtain something that looks
nearly identical to distance-weighted KNN by doing so. This has the
added advantage that you can go futher, and use back-propagation
to learn good Gaussian widths (γ) and “voting” factors (v) for the
nearest neighbor algorithm.

Consider an RBF network with
one hidden unit per training point,
centered at that point. What bad
thing might happen if you use back-
propagation to estimate the γs and
v on this data if you’re not careful?
How could you be careful?

?

10.7 Further Reading

TODO further reading

	Neural Networks
	Bio-inspired Multi-Layer Networks
	The Back-propagation Algorithm
	Initialization and Convergence of Neural Networks
	Beyond Two Layers
	Breadth versus Depth
	Basis Functions
	Further Reading

