
9 | PROBABILISTIC MODELING

Dependencies:

Many of the models and algorithms you have learned about
thus far are relatively disconnected. There is an alternative view of
machine learning that unites and generalizes much of what you have
already learned. This is the probabilistic modeling framework, in
which you will explicitly think of learning as a problem of statistical
inference.

In this chapter, you will learn about two flavors of probabilistic
models: generative and conditional. You will see that many of the ap-
proaches (both supervised and unsupervised) we have seen already
can be cast as probabilistic models. Through this new view, you will
be able to develop learning algorithms that have inductive biases
closer to what you, as a designer, believe. Moreover, the two chap-
ters that follow will make heavy use of the probabilistic modeling
approach to open doors to other learning problems.

9.1 Classification by Density Estimation

Recall from Chapter 2 that if we had access to the underlying prob-
ability distribution D, then we could form a Bayes optimal classifier
as:

f (BO)(x̂) = arg max
ŷ∈Y
D(x̂, ŷ) (9.1)

Unfortunately, no one gave you this distribution, but the optimality
of this approach suggests that good way to build a classifier is to
try to estimate D. In other words, you try to learn a distribution D̂,
which you hope to very similar to D, and then use this distribution
for classification. Just as in the preceding chapters, you can try to
form your estimate of D based on a finite training set.

The most direct way that you can attempt to construct such a
probability distribution is to select a family of parametric distribu-
tions. For instance, a Gaussian (or Normal) distribution is parametric:
it’s parameters are its mean and covariance. The job of learning is

Learning Objectives:
• Define the generative story for a

naive Bayes classifier.

• Derive relative frequency as the so-
lution to a constrained optimization
problem.

• Compare and contrast generative,
conditional and discriminative
learning.

• Explain when generative models are
likely to fail.

• Derive logistic loss with an `2
regularizer from a probabilistic
perspective.

The world is noisy and messy. You need to deal with the noise
and uncertainty. – Daphne Koller

probabilistic modeling 117

A probability distribution p specifies the likelihood of an event e, where p(e) ∈ [0, 1]. It’s often con-
venient to think of events as “configurations of the world”, so p(e) says “how likely is it that the
world is in configuration e.” Often world configurations are built up of smaller pieces, for instance you
might say “e = the configuration in which it is rainy, windy and cold.” Formally, we might write this as
“e = {Weather = rainy, Wind = windy, Temperature = cold}”, where we’ve used a convention that
random variables (like Temperature) are capitalized and their instantiations (like cold) are lower case.
Considering this event, we want to evaluate p(Weather = rainy, Wind = windy, Temperature = cold),
or more generally p(A = a, B = b, C = c) for some random variables A, B and C, and some instantia-
tions of those random variables a, b and c respectively.

There are a few standard rules of probability that we will use regularly:

sum-to-one: if you sum over all possible configurations of the world, p sums to one: ∑e p(E = e) = 1.
marginalization: you can sum out one random variable to remove it from the world: ∑a p(A = a, B =

b) = p(B = b).
chain rule: if a world configuration consists of two or more random variables, you can evaluate the
likelihood of the world one step at a time: p(A = a, B = b) = p(A = a)p(B = b | A = a). Events are
unordered, so you can also get p(A = a, B = b) = p(B = b)p(A = a | B = b).
Bayes rule: combining the two chain rule equalities and dividing, we can relate a conditional proba-
bility in one direction with that in the other direction: p(A = a | B = b) = p(A = a)p(B = b | A =

a)/p(B = b).

MATH REVIEW | RULES OF PROBABILITY

Figure 9.1:

then to infer which parameters are “best” as far as the observed train-
ing data is concerned, as well as whatever inductive bias you bring.
A key assumption that you will need to make is that the training data
you have access to is drawn independently from D. In particular, as
you draw examples (x1, y1) ∼ D then (x2, y2) ∼ D and so on, the
nth draw (xn, yn) is drawn from D and does not otherwise depend
on the previous n− 1 samples. This assumption is usually false, but
is also usually sufficiently close to being true to be useful. Together
with the assumption that all the training data is drawn from the same
distribution D leads to the i.i.d. assumption or independently and
identically distributed assumption. This is a key assumption in al-
most all of machine learning.

9.2 Statistical Estimation

Suppose you need to model a coin that is possibly biased (you can
think of this as modeling the label in a binary classification problem),
and that you observe data HHTH (where H means a flip came up heads

118 a course in machine learning

and T means it came up tails). You can assume that all the flips came
from the same coin, and that each flip was independent (hence, the
data was i.i.d.). Further, you may choose to believe that the coin has
a fixed probability β of coming up heads (and hence 1− β of coming
up tails). Thus, the parameter of your model is simply the scalar β. Describe a case in which at least

one of the assumptions we are
making about the coin flip is false.

?The most basic computation you might perform is maximum like-
lihood estimation: namely, select the paramter β the maximizes the
probability of the data under that parameter. In order to do so, you
need to compute the probability of the data:

pβ(D) = pβ(HHTH) definition of D (9.2)

= pβ(H)pβ(H)pβ(T)pβ(H) data is independent (9.3)

= ββ(1− β)β (9.4)

= β3(1− β) (9.5)

= β3 − β4 (9.6)

Thus, if you want the parameter β that maximizes the probability of
the data, you can take the derivative of β3 − β4 with respect to β, set
it equal to zero and solve for β:

∂

∂β

[
β3 − β4

]
= 3β2 − 4β3 (9.7)

4β3 = 3β2 (9.8)

⇐⇒4β = 3 (9.9)

⇐⇒β =
3
4

(9.10)

Thus, the maximum likelihood β is 0.75, which is probably what
you would have selected by intuition. You can solve this problem
more generally as follows. If you have H-many heads and T-many
tails, the probability of your data sequence is βH(1− β)T . You can
try to take the derivative of this with respect to β and follow the
same recipe, but all of the products make things difficult. A more
friendly solution is to work with the log likelihood or log proba-
bility instead. The log likelihood of this data sequence is H log β +

T log(1− β). Differentiating with respect to β, you get H/β− T/(1−
β). To solve, you obtain H/β = T/(1 − β) so H(1 − β) = Tβ.
Thus H − Hβ = Tβ and so H = (H + T)β, finally yeilding that
β = H/(H + T) or, simply, the fraction of observed data that came up
heads. In this case, the maximum likelihood estimate is nothing but
the relative frequency of observing heads! How do you know that the solution

of β = H/(H + T) is actually a
maximum?

?Now, suppose that instead of flipping a coin, you’re rolling a K-
sided die (for instance, to pick the label for a multiclass classification
problem). You might model this by saying that there are parameters
θ1, θ2, . . . , θK specifying, respectively, the probabilities that any given

probabilistic modeling 119

side comes up on a role. Since these are themselves probabilities,
each θk should be at least zero, and the sum of the θks should be one.
Given a data set that consists of x1 rolls of 1, x2 rolls of 2 and so on,
the probability of this data is ∏k θ

xk
k , yielding a log probability of

∑k xk log θk. If you pick some particular parameter, say θ3, the deriva-
tive of this with respect to θ3 is x3/θ3, which you want to equate to
zero. This leads to. . . θ3 → ∞.

This is obviously “wrong.” From the mathematical formulation,
it’s correct: in fact, setting all of the θks to ∞ does maximize ∏k θ

xk
k for

any (non-negative) xks. The problem is that you need to constrain the
θs to sum to one. In particular, you have a constraint that ∑k θk = 1
that you forgot to enforce. A convenient way to enforce such con-
straints is through the technique of Lagrange multipliers. To make
this problem consistent with standard minimization problems, it is
convenient to minimize negative log probabilities, instead of maxi-
mizing log probabilities. Thus, the constrainted optimization problem
is:

min
θ

−∑
k

xk log θk (9.11)

subj. to ∑
k

θk − 1 = 0

The Lagrange multiplier approach involves adding a new variable λ

to the problem (called the Lagrange variable) corresponding to the
constraint, and to use that to move the constraint into the objective.
The result, in this case, is:

max
λ

min
θ

−∑
k

xk log θk − λ

(
∑
k

θk − 1

)
(9.12)

Turning a constrained optimization problem into it’s corresponding
Lagrangian is straightforward. The mystical aspect is why it works.
In this case, the idea is as follows. Think of λ as an adversary: λ is
trying to maximize this function (you’re trying to minimize it). If
you pick some parameters θ that actually satisfy the constraint, then
the green term in Eq (9.12) goes to zero, and therefore λ does not
matter: the adversary cannot do anything. On the other hand, if the
constraint is even slightly unsatisfied, then λ can tend toward +∞
or −∞ to blow up the objective. So, in order to have a non-infinite
objective value, the optimizer must find values of θ that satisfy the
constraint.

If we solve the inner optimization of Eq (9.12) by differentiating
with respect to θ1, we get x1/θ1 = λ, yielding θ1 = x1/λ. In general,
the solution is θk = xk/λ. Remembering that the goal of λ is to
enforce the sums-to-one constraint, we can set λ = ∑k xk and verify

120 a course in machine learning

that this is a solution. Thus, our optimal θk = xk/ ∑k xk, which again
completely corresponds to intuition.

9.3 Naive Bayes Models

Now, consider the binary classification problem. You are looking for
a parameterized probability distribution that can describe the training
data you have. To be concrete, your task might be to predict whether
a movie review is positive or negative (label) based on what words
(features) appear in that review. Thus, the probability for a single data
point can be written as:

pθ((y, x)) = pθ(y, x1, x2, . . . , xD) (9.13)

The challenge in working with a probability distribution like Eq (9.13)
is that it’s a distribution over a lot of variables. You can try to sim-
plify it by applying the chain rule of probabilities:

pθ(x1, x2, . . . , xD, y) = pθ(y)pθ(x1 | y)pθ(x2 | y, x1)pθ(x3 | y, x1, x2)

· · · pθ(xD | y, x1, x2, . . . , xD−1) (9.14)

= pθ(y)∏
d

pθ(xd | y, x1, . . . , xd−1) (9.15)

At this point, this equality is exact for any probability distribution.
However, it might be difficult to craft a probability distribution for
the 10000th feature, given the previous 9999. Even if you could, it
might be difficult to accurately estimate it. At this point, you can
make assumptions. A classic assumption, called the naive Bayes as-
sumption, is that the features are independent, conditioned on the label.
In the movie review example, this is saying that once you know that
it’s a positive review, the probability that the word “excellent” appears
is independent of whether “amazing” also appeared. (Note that
this does not imply that these words are independent when you
don’t know the label—they most certainly are not.) Formally this
assumption states that:

Assumption: p(xd | y, xd′) = p(xd | y) , ∀d 6= d′ (9.16)

Under this assumption, you can simplify Eq (9.15) to:

pθ((y, x)) = pθ(y)∏
d

pθ(xd | y) naive Bayes assumption (9.17)

At this point, you can start parameterizing p. Suppose, for now,
that your labels are binary and your features are also binary. In this
case, you could model the label as a biased coin, with probability of
heads (e.g., positive review) given by θ0. Then, for each label, you

probabilistic modeling 121

can imagine having one (biased) coin for each feature. So if there are
D-many features, you’ll have 1 + 2D total coins: one for the label
(call it θ0) and one for each label/feature combination (call these θ+1

and as θ−1). In the movie review example, we might expect θ0 ≈ 0.4
(forty percent of movie reviews are positive) and also that θ+1 might
give high probability to words like “excellent” and “amazing” and
“good” and θ−1 might give high probability to words like “terrible”
and “boring” and “hate”. You can rewrite the probability of a single
example as follows, eventually leading to the log probability of the
entire data set:

pθ((y, x)) = pθ(y)∏
d

pθ(xd | y) naive Bayes assumption

(9.18)

=
(

θ
[y=+1]
0 (1− θ0)

[y=−1]
)

∏
d

θ
[xd=1]
(y),d (1− θ(y),d)

[xd=0] model assumptions

(9.19)

Solving for θ0 is identical to solving for the biased coin case from
before: it is just the relative frequency of positive labels in your data
(because θ0 doesn’t depend on x at all). For the other parameters,
you can repeat the same exercise as before for each of the 2D coins
independently. This yields:

θ̂0 =
1
N ∑

n
[yn = +1] (9.20)

θ̂(+1),d =
∑n[yn = +1∧ xn,d = 1]

∑n[yn = +1]
(9.21)

θ̂(−1),d =
∑n[yn = −1∧ xn,d = 1]

∑n[yn = −1]
(9.22)

In the case that the features are not binary, you need to choose a dif-
ferent model for p(xd | y). The model we chose here is the Bernouilli
distribution, which is effectively a distribution over independent
coin flips. For other types of data, other distributions become more
appropriate. The die example from before corresponds to a discrete
distribution. If the data is continuous, you might choose to use a
Gaussian distribution (aka Normal distribution). The choice of dis-
tribution is a form of inductive bias by which you can inject your
knowledge of the problem into the learning algorithm.

9.4 Prediction

Consider the predictions made by the naive Bayes model with Bernoulli
features in Eq (9.18). You can better understand this model by con-
sidering its decision boundary. In the case of probabilistic models,

122 a course in machine learning

There are a few common probability distributions that we use in this book. The first is the Bernouilli
distribution, which models binary outcomes (like coin flips). A Bernouilli distribution, Ber(θ) is pa-
rameterized by a single scalar value θ ∈ [0, 1] that represents the probability of heads. The likelihood
function is Ber(x | θ) = θx(1 − θ)1−x. The generalization of the Bernouilli to more than two possible
outcomes (like rolls of a die) is the Discrete distribution, Disc(th). If the die has K sides, then θ ∈ RK

with all entries non-negative and ∑k θk = 1. θk is the probabability that the die comes up on side k.
The likelihood function is Disc(x | θ) = ∏k θ

1[x=k]
k . The Binomial distribution is just like the Bernouilli

distribution but for multiple flips of the rather than a single flip; it’s likelihood is (
Bin(k | n,θ)=n
kθk(1−θ)n−k), where n

is the number of flips and k is the number of heads. The Multinomial distribution extends the Discrete
distribution also to multiple rolls; it’s likelihood isMult(x | n, θ) = n!

∏k xk ! ∏k θ
xk
k , where n is the total

number of rolls and xk is the number of times the die came up on side k (so ∑k xk = n). The preceding
distributions are all discrete.

There are two common continuous distributions we need. The first is the Uniform distribution,
Uni(a, b) which is uniform over the closed range [a, b]. It’s density function is Uni(x | a, b) = 1

b−a 1[x ∈
[a, b]]. Finally, the Gaussian distribution is parameterized by a mean µ and variance σ2 and has density
Nor(x | µ, σ2) = (2πσ2)−

1
2 exp

[
− 1

2σ2 (x− µ)2
]
.

MATH REVIEW | COMMON PROBABILITY DISTRIBUTIONS

Figure 9.2:

the decision boundary is the set of inputs for which the likelihood of
y = +1 is precisely 50%. Or, in other words, the set of inputs x for
which p(y = +1 | x)/p(y = −1 | x) = 1. In order to do this, the
first thing to notice is that p(y | x) = p(y, x)/p(x). In the ratio, the
p(x) terms cancel, leaving p(y = +1, x)/p(y = −1, x). Instead of
computing this ratio, it is easier to compute the log-likelihood ratio
(or LLR), log p(y = +1, x)− log p(y = −1, x), computed below:

LLR = log

[
θ0 ∏

d
θ
[xd=1]
(+1),d(1− θ(+1),d)

[xd=0]

]

− log

[
(1− θ0)∏

d
θ
[xd=1]
(−1),d(1− θ(−1),d)

[xd=0]

]
model assumptions

(9.23)

= log θ0 − log(1− θ0) + ∑
d
[xd = 1]

(
log θ(+1),d − log θ(−1),d

)
+ ∑

d
[xd = 0]

(
log(1− θ(+1),d)− log(1− θ(−1),d)

)
take logs and rearrange

(9.24)

= ∑
d

xd log
θ(+1),d

θ(−1),d
+ ∑

d
(1− xd) log

1− θ(+1),d

1− θ(−1),d
+ log

θ0

1− θ0
simplify log terms

(9.25)

probabilistic modeling 123

= ∑
d

xd

[
log

θ(+1),d

θ(−1),d
− log

1− θ(+1),d

1− θ(−1),d

]
+ ∑

d
log

1− θ(+1),d

1− θ(−1),d
+ log

θ0

1− θ0
group x-terms

(9.26)

= x ·w + b (9.27)

wd = log
θ(+1),d(1− θ(−1),d)

θ(−1),d(1− θ(+1),d)
, b = ∑

d
log

1− θ(+1),d

1− θ(−1),d
+ log

θ0

1− θ0

(9.28)

The result of the algebra is that the naive Bayes model has precisely
the form of a linear model! Thus, like perceptron and many of the
other models you’ve previous studied, the decision boundary is
linear.

9.5 Generative Stories

A useful way to develop probabilistic models is to tell a generative
story. This is a fictional story that explains how you believe your
training data came into existence. To make things interesting, con-
sider a multiclass classification problem, with continuous features
modeled by independent Gaussians. Since the label can take values
1 . . . K, you can use a discrete distribution (die roll) to model it (as
opposed to the Bernoilli distribution from before):

1. For each example n = 1 . . . N:

(a) Choose a label yn ∼ Disc(θ)

(b) For each feature d = 1 . . . D:

i. Choose feature value xn,d ∼ Nor(µyn ,d, σ2
yn ,d)

This generative story can be directly translated into a likelihood
function by replacing the “for each”s with products:

p(D) =

for each example︷ ︸︸ ︷
∏

n
θyn︸︷︷︸

choose label

∏
d

1√
2πσ2

yn ,d

exp

[
− 1

2σ2
yn ,d

(xn,d − µyn ,d)
2

]
︸ ︷︷ ︸

choose feature value︸ ︷︷ ︸
for each feature

(9.29)

You can take logs to arrive at the log-likelihood:

log p(D) = ∑
n

[
log θyn + ∑

d
−1

2
log(σ2

yn ,d)−
1

2σ2
yn ,d

(xn,d − µyn ,d)
2

]
+ const

(9.30)

124 a course in machine learning

To optimize for θ, you need to add a “sums to one” constraint as
before. This leads to the previous solution where the θks are propor-
tional to the number of examples with label k. In the case of the µs
you can take a derivative with respect to, say µk,i and obtain:

∂ log p(D)

∂µk,i
=

∂

∂µk,i
−∑

n
∑
d

1
2σ2

yn ,d
(xn,d − µyn ,d)

2 ignore irrelevant terms

(9.31)

=
∂

∂µk,i
− ∑

n:yn=k

1
2σ2

k,d
(xn,i − µk,i)

2 ignore irrelevant terms

(9.32)

= ∑
n:yn=k

1
σ2

k,d
(xn,i − µk,i) take derivative

(9.33)

Setting this equal to zero and solving yields:

µk,i =
∑n:yn=k xn,i

∑n:yn=k 1
(9.34)

Namely, the sample mean of the ith feature of the data points that fall
in class k. A similar analysis for σ2

k,i yields:

∂ log p(D)

∂σ2
k,i

=
∂

∂σ2
k,i
− ∑

y:yn=k

[
1
2

log(σ2
k,i) +

1
2σ2

k,i
(xn,i − µk,i)

2

]
ignore irrelevant terms

(9.35)

= − ∑
y:yn=k

[
1

2σ2
k,i
− 1

2(σ2
k,i)

2
(xn,i − µk,i)

2

]
take derivative

(9.36)

=
1

2σ4
k,i

∑
y:yn=k

[
(xn,i − µk, i)2 − σ2

k,i

]
simplify

(9.37)

You can now set this equal to zero and solve, yielding:

σ2
k,i =

∑n:yn=k(xn,i − µk,i)
2

∑n:yn=k 1
(9.38)

Which is just the sample variance of feature i for class k. What would the estimate be if you
decided that, for a given class k, all
features had equal variance? What
if you assumed feature i had equal
variance for each class? Under what
circumstances might it be a good
idea to make such assumptions?

?9.6 Conditional Models

In the foregoing examples, the task was formulated as attempting to
model the joint distribution of (x, y) pairs. This may seem wasteful:
at prediction time, all you care about is p(y | x), so why not model it
directly?

probabilistic modeling 125

Starting with the case of regression is actually somewhat simpler
than starting with classification in this case. Suppose you “believe”
that the relationship between the real value y and the vector x should
be linear. That is, you expect that y = w · x + b should hold for some
parameters (w, b). Of course, the data that you get does not exactly
obey this: that’s fine, you can think of deviations from y = w · x +

b as noise. To form a probabilistic model, you must assume some
distribution over noise; a convenient choice is zero-mean Gaussian
noise. This leads to the following generative story:

1. For each example n = 1 . . . N:

(a) Compute tn = w · xn + b

(b) Choose noise en ∼ Nor(0, σ2)

(c) Return yn = tn + en

In this story, the variable tn stands for “target.” It is the noiseless
variable that you do not get to observe. Similarly en is the error
(noise) on example n. The value that you actually get to observe is
yn = tn + en. See Figure 9.3.

Figure 9.3: pictorial view of targets
versus labels

A basic property of the Gaussian distribution is additivity. Namely,
that if a ∼ Nor(µ, σ2) and b = a + c, then b ∼ Nor(µ + c, σ2). Given
this, from the generative story above, you can derive a shorter gener-
ative story:

1. For each example n = 1 . . . N:

(a) Choose yn ∼ Nor(w · xn + b, σ2)

Reading off the log likelihood of a dataset from this generative story,
you obtain:

log p(D) = ∑
n

[
−1

2
log(σ2)− 1

2σ2 (w · xn + b− yn)
2
]

model assumptions

(9.39)

= − 1
2σ2 ∑

n
(w · xn + b− yn)

2 + const remove constants

(9.40)

This is precisely the linear regression model you encountered in
Section 8.6! To minimizing the negative log probability, you need only
solve for the regression coefficients w, b as before.

In the case of binary classification, using a Gaussian noise model
does not make sense. Switching to a Bernoulli model, which de-
scribes binary outcomes, makes more sense. The only remaining
difficulty is that the parameter of a Bernoulli is a value between zero
and one (the probability of “heads”) so your model must produce

126 a course in machine learning

such values. A classic approach is to produce a real-valued target, as
before, and then transform this target into a value between zero and
one, so that −∞ maps to 0 and +∞ maps to 1. A function that does
this is the logistic function1, defined below and plotted in Figure 9.4: 1 Also called the sigmoid function

because of it’s “S”-shape.

Figure 9.4: sketch of logistic function

Logistic function: σ(z) =
1

1 + exp[−z]
=

exp z
1 + exp z

(9.41)

The logistic function has several nice properties that you can verify
for yourself: σ(−z) = 1− σ(z) and ∂σ/∂z = zσ2(z).

Using the logistic function, you can write down a generative story
for binary classification:

1. For each example n = 1 . . . N:

(a) Compute tn = σ (w · xn + b)

(b) Compute zn ∼ Ber(tn)

(c) Return yn = 2zn − 1 (to make it ±1)

The log-likelihood for this model is:

log p(D) = ∑
n

[
[yn = +1] log σ (w · xn + b)

+ [yn = −1] log σ (−w · xn + b)
]

model and properties of σ

(9.42)

= ∑
n

log σ (yn (w · xn + b)) join terms

(9.43)

= −∑
n

log [1 + exp (−yn (w · xn + b))] definition of σ

(9.44)

= −∑
n
`(log)(yn, w · xn + b) definition of `(log)

(9.45)

As you can see, the log-likelihood is precisely the negative of (a
scaled version of) the logistic loss from Chapter 8. This model is the
logistic regression model, and this is where logisitic loss originally
derived from.

TODO: conditional versus joint

9.7 Regularization via Priors

In the foregoing discussion, parameters of the model were selected
according to the maximum likelihood criteria: find the parameters
θ that maximize pθ(D). The trouble with this approach is easy to

probabilistic modeling 127

see even in a simple coin flipping example. If you flip a coin twice
and it comes up heads both times, the maximum likelihood estimate
for the bias of the coin is 100%: it will always come up heads. This is
true even if you had only flipped it once! If course if you had flipped
it one million times and it had come up heads every time, then you
might find this to be a reasonable solution.

This is clearly undesirable behavior, especially since data is expen-
sive in a machine learning setting. One solution (there are others!) is
to seek parameters that balance a tradeoff between the likelihood of
the data and some prior belief you have about what values of those
parameters are likely. Taking the case of the logistic regression, you
might a priori believe that small values of w are more likely than
large values, and choose to represent this as a Gaussian prior on each
component of w.

The maximum a posteriori principle is a method for incoporat-
ing both data and prior beliefs to obtain a more balanced parameter
estimate. In abstract terms, consider a probabilistic model over data
D that is parameterized by parameters θ. If you think of the pa-
rameters as just another random variable, then you can write this
model as p(D | θ), and maximum likelihood amounts to choosing θ

to maximize p(D | θ). However, you might instead with to maximize
the probability of the parameters, given the data. Namely, maximize
p(θ | D). This term is known as the posterior distribution on θ, and
can be computed by Bayes’ rule:

p(θ | D)︸ ︷︷ ︸
posterior

=

prior︷︸︸︷
p(θ)

likelihood︷ ︸︸ ︷
p(D | θ)

p(D)︸ ︷︷ ︸
evidence

, where p(D) =
∫

dθp(θ)p(D | θ)

(9.46)

This reads: the posterior is equal to the prior times the likelihood di-
vided by the evidence.2 The evidence is a scary-looking term (it has 2 The evidence is sometimes called the

marginal likelihood.an integral!) but note that from the perspective of seeking parameters
θ than maximize the posterior, the evidence is just a constant (it does
not depend on θ) and therefore can be ignored.

Returning to the logistic regression example with Gaussian priors
on the weights, the log posterior looks like:

log p(θ | D) = −∑
n
`(log)(yn, w · xn + b)−∑

d

1
2σ2 w2

d + const model definition

(9.47)

= −∑
n
`(log)(yn, w · xn + b)− 1

2σ2 ||w||
2 (9.48)

and therefore reduces to a regularized logistic function, with a

128 a course in machine learning

squared 2-norm regularizer on the weights. (A 1-norm regularizer
can be obtained by using a Laplace prior on w rather than a Gaussian
prior on w.)

9.8 Further Reading

TODO

	Probabilistic Modeling
	Classification by Density Estimation
	Statistical Estimation
	Naive Bayes Models
	Prediction
	Generative Stories
	Conditional Models
	Regularization via Priors
	Further Reading

