
7 | LINEAR MODELS

Dependencies:

In Chapter 4, you learned about the perceptron algorithm for
linear classification. This was both a model (linear classifier) and al-
gorithm (the perceptron update rule) in one. In this section, we will
separate these two, and consider general ways for optimizing lin-
ear models. This will lead us into some aspects of optimization (aka
mathematical programming), but not very far. At the end of this
chapter, there are pointers to more literature on optimization for
those who are interested.

The basic idea of the perceptron is to run a particular algorithm
until a linear separator is found. You might ask: are there better al-
gorithms for finding such a linear separator? We will follow this idea
and formulate a learning problem as an explicit optimization prob-
lem: find me a linear separator that is not too complicated. We will
see that finding an “optimal” separator is actually computationally
prohibitive, and so will need to “relax” the optimality requirement.
This will lead us to a convex objective that combines a loss func-
tion (how well are we doing on the training data?) and a regularizer
(how complicated is our learned model?). This learning framework
is known as both Tikhonov regularization and structural risk mini-
mization.

7.1 The Optimization Framework for Linear Models

You have already seen the perceptron as a way of finding a weight
vector w and bias b that do a good job of separating positive train-
ing examples from negative training examples. The perceptron is a
model and algorithm in one. Here, we are interested in separating
these issues. We will focus on linear models, like the perceptron.
But we will think about other, more generic ways of finding good
parameters of these models.

The goal of the perceptron was to find a separating hyperplane
for some training data set. For simplicity, you can ignore the issue
of overfitting (but just for now!). Not all data sets are linearly sepa-

Learning Objectives:
• Define and plot four surrogate loss

functions: squared loss, logistic loss,
exponential loss and hinge loss.

• Compare and contrast the optimiza-
tion of 0/1 loss and surrogate loss
functions.

• Solve the optimization problem
for squared loss with a quadratic
regularizer in closed form.

• Implement and debug gradient
descent and subgradient descent.

The essence of mathematics is not to make simple things compli-
cated, but to make complicated things simple. – Stanley Gudder

88 a course in machine learning

rable. In the case that your training data isn’t linearly separable, you
might want to find the hyperplane that makes the fewest errors on
the training data. We can write this down as a formal mathematics
optimization problem as follows:

min
w,b

∑
n

1[yn(w · xn + b) > 0] (7.1)

In this expression, you are optimizing over two variables, w and b.
The objective function is the thing you are trying to minimize. In
this case, the objective function is simply the error rate (or 0/1 loss) of
the linear classifier parameterized by w, b. In this expression, 1[·] is
the indicator function: it is one when (·) is true and zero otherwise. You should remember the yw · x

trick from the perceptron discus-
sion. If not, re-convince yourself
that this is doing the right thing.

?We know that the perceptron algorithm is guaranteed to find
parameters for this model if the data is linearly separable. In other
words, if the optimum of Eq (7.1) is zero, then the perceptron will
efficiently find parameters for this model. The notion of “efficiency”
depends on the margin of the data for the perceptron.

You might ask: what happens if the data is not linearly separable?
Is there an efficient algorithm for finding an optimal setting of the
parameters? Unfortunately, the answer is no. There is no polynomial
time algorithm for solving Eq (7.1), unless P=NP. In other words,
this problem is NP-hard. Sadly, the proof of this is quite complicated
and beyond the scope of this book, but it relies on a reduction from a
variant of satisfiability. The key idea is to turn a satisfiability problem
into an optimization problem where a clause is satisfied exactly when
the hyperplane correctly separates the data.

You might then come back and say: okay, well I don’t really need
an exact solution. I’m willing to have a solution that makes one or
two more errors than it has to. Unfortunately, the situation is really
bad. Zero/one loss is NP-hard to even appproximately minimize. In
other words, there is no efficient algorithm for even finding a solution
that’s a small constant worse than optimal. (The best known constant
at this time is 418/415 ≈ 1.007.)

However, before getting too disillusioned about this whole enter-
prise (remember: there’s an entire chapter about this framework, so
it must be going somewhere!), you should remember that optimizing
Eq (7.1) perhaps isn’t even what you want to do! In particular, all it
says is that you will get minimal training error. It says nothing about
what your test error will be like. In order to try to find a solution that
will generalize well to test data, you need to ensure that you do not
overfit the data. To do this, you can introduce a regularizer over the
parameters of the model. For now, we will be vague about what this
regularizer looks like, and simply call it an arbitrary function R(w, b).

linear models 89

This leads to the following, regularized objective:

min
w,b

∑
n

1[yn(w · xn + b) > 0] + λR(w, b) (7.2)

In Eq (7.2), we are now trying to optimize a trade-off between a so-
lution that gives low training error (the first term) and a solution
that is “simple” (the second term). You can think of the maximum
depth hyperparameter of a decision tree as a form of regularization
for trees. Here, R is a form of regularization for hyperplanes. In this
formulation, λ becomes a hyperparameter for the optimization. Assuming R does the “right thing,”

what value(s) of λ will lead to over-
fitting? What value(s) will lead to
underfitting?

?The key remaining questions, given this formalism, are:

• How can we adjust the optimization problem so that there are
efficient algorithms for solving it?

• What are good regularizers R(w, b) for hyperplanes?

• Assuming we can adjust the optimization problem appropriately,
what algorithms exist for efficiently solving this regularized opti-
mization problem?

We will address these three questions in the next sections.

7.2 Convex Surrogate Loss Functions

You might ask: why is optimizing zero/one loss so hard? Intuitively,
one reason is that small changes to w, b can have a large impact on
the value of the objective function. For instance, if there is a positive
training example with w, x ·+b = −0.0000001, then adjusting b up-
wards by 0.00000011 will decrease your error rate by 1. But adjusting
it upwards by 0.00000009 will have no effect. This makes it really
difficult to figure out good ways to adjust the parameters.

Figure 7.1: plot of zero/one versus
margin

To see this more clearly, it is useful to look at plots that relate
margin to loss. Such a plot for zero/one loss is shown in Figure 7.1.
In this plot, the horizontal axis measures the margin of a data point
and the vertical axis measures the loss associated with that margin.
For zero/one loss, the story is simple. If you get a positive margin
(i.e., y(w · x + b) > 0) then you get a loss of zero. Otherwise you get
a loss of one. By thinking about this plot, you can see how changes
to the parameters that change the margin just a little bit can have an
enormous effect on the overall loss.

Figure 7.2: plot of zero/one versus
margin and an S version of it

You might decide that a reasonable way to address this problem is
to replace the non-smooth zero/one loss with a smooth approxima-
tion. With a bit of effort, you could probably concoct an “S”-shaped
function like that shown in Figure 7.2. The benefit of using such an
S-function is that it is smooth, and potentially easier to optimize. The
difficulty is that it is not convex.

90 a course in machine learning

If you remember from calculus, a convex function is one that looks
like a happy face (^). (On the other hand, a concave function is one
that looks like a sad face (_); an easy mnemonic is that you can hide
under a concave function.) There are two equivalent definitions of
a convex function. The first is that it’s second derivative is always
non-negative. The second, more geometric, defition is that any chord
of the function lies above it. This is shown in Figure 7.3. There you
can see a convex function and a non-convex function, both with two
chords drawn in. In the case of the convex function, the chords lie
above the function. In the case of the non-convex function, there are
parts of the chord that lie below the function.

Figure 7.3: plot of convex and non-
convex functions with two chords each

Convex functions are nice because they are easy to minimize. Intu-
itively, if you drop a ball anywhere in a convex function, it will even-
tually get to the minimum. This is not true for non-convex functions.
For example, if you drop a ball on the very left end of the S-function
from Figure 7.2, it will not go anywhere.

This leads to the idea of convex surrogate loss functions. Since
zero/one loss is hard to optimize, you want to optimize something
else, instead. Since convex functions are easy to optimize, we want
to approximate zero/one loss with a convex function. This approxi-
mating function will be called a surrogate loss. The surrogate losses
we construct will always be upper bounds on the true loss function:
this guarantees that if you minimize the surrogate loss, you are also
pushing down the real loss.

Figure 7.4: surrogate loss fns

There are four common surrogate loss functions, each with their
own properties: hinge loss, logistic loss, exponential loss and
squared loss. These are shown in Figure 7.4 and defined below.
These are defined in terms of the true label y (which is just {−1,+1})
and the predicted value ŷ = w · x + b.

Zero/one: `(0/1)(y, ŷ) = 1[yŷ ≤ 0] (7.3)

Hinge: `(hin)(y, ŷ) = max{0, 1− yŷ} (7.4)

Logistic: `(log)(y, ŷ) =
1

log 2
log (1 + exp[−yŷ]) (7.5)

Exponential: `(exp)(y, ŷ) = exp[−yŷ] (7.6)

Squared: `(sqr)(y, ŷ) = (y− ŷ)2 (7.7)

In the definition of logistic loss, the 1
log 2 term out front is there sim-

ply to ensure that `(log)(y, 0) = 1. This ensures, like all the other
surrogate loss functions, that logistic loss upper bounds the zero/one
loss. (In practice, people typically omit this constant since it does not
affect the optimization.)

There are two big differences in these loss functions. The first
difference is how “upset” they get by erroneous predictions. In the

linear models 91

case of hinge loss and logistic loss, the growth of the function as ŷ
goes negative is linear. For squared loss and exponential loss, it is
super-linear. This means that exponential loss would rather get a few
examples a little wrong than one example really wrong. The other
difference is how they deal with very confident correct predictions.
Once yŷ > 1, hinge loss does not care any more, but logistic and
exponential still think you can do better. On the other hand, squared
loss thinks it’s just as bad to predict +3 on a positive example as it is
to predict −1 on a positive example.

7.3 Weight Regularization

In our learning objective, Eq (7.2), we had a term correspond to the
zero/one loss on the training data, plus a regularizer whose goal
was to ensure that the learned function didn’t get too “crazy.” (Or,
more formally, to ensure that the function did not overfit.) If you re-
place to zero/one loss with a surrogate loss, you obtain the following
objective:

min
w,b

∑
n
`(yn, w · xn + b) + λR(w, b) (7.8)

The question is: what should R(w, b) look like?
From the discussion of surrogate loss function, we would like

to ensure that R is convex. Otherwise, we will be back to the point
where optimization becomes difficult. Beyond that, a common desire
is that the components of the weight vector (i.e., the wds) should be
small (close to zero). This is a form of inductive bias.

Why are small values of wd good? Or, more precisely, why do
small values of wd correspond to simple functions? Suppose that we
have an example x with label +1. We might believe that other ex-
amples, x′ that are nearby x should also have label +1. For example,
if I obtain x′ by taking x and changing the first component by some
small value ε and leaving the rest the same, you might think that the
classification would be the same. If you do this, the difference be-
tween ŷ and ŷ′ will be exactly εw1. So if w1 is reasonably small, this
is unlikely to have much of an effect on the classification decision. On
the other hand, if w1 is large, this could have a large effect.

Another way of saying the same thing is to look at the derivative
of the predictions as a function of w1. The derivative of w · x + b with
respect to w1 is:

∂ [w · x + b]
∂w1

=
∂ [∑d wdxd + b]

∂w1
= x1 (7.9)

Interpreting the derivative as the rate of change, we can see that
the rate of change of the prediction function is proportional to the

92 a course in machine learning

individual weights. So if you want the function to change slowly, you
want to ensure that the weights stay small.

One way to accomplish this is to simply use the norm of the

weight vector. Namely R(norm)(w, b) = ||w|| =
√

∑d w2
d. This function

is convex and smooth, which makes it easy to minimize. In prac-
tice, it’s often easier to use the squared norm, namely R(sqr)(w, b) =

||w||2 = ∑d w2
d because it removes the ugly square root term and

remains convex. An alternative to using the sum of squared weights
is to use the sum of absolute weights: R(abs)(w, b) = ∑d |wd|. Both of
these norms are convex. Why do we not regularize the bias

term b??In addition to small weights being good, you could argue that zero
weights are better. If a weight wd goes to zero, then this means that
feature d is not used at all in the classification decision. If there are a
large number of irrelevant features, you might want as many weights
to go to zero as possible. This suggests an alternative regularizer:
R(cnt)(w, b) = ∑d 1[xd 6= 0].

Why might you not want to use
R(cnt) as a regularizer??

This line of thinking leads to the general concept of p-norms.
(Technically these are called `p (or “ell p”) norms, but this notation
clashes with the use of ` for “loss.”) This is a family of norms that all
have the same general flavor. We write ||w||p to denote the p-norm of
w.

||w||p =

(
∑
d
|wd|p

) 1
p

(7.10)

You can check that the 2-norm exactly corresponds to the usual Eu-
clidean norm, and that the 1-norm corresponds to the “absolute”
regularizer described above. You can actually identify the R(cnt)

regularizer with a p-norm as well.
Which value of p gives it to you?
(Hint: you may have to take a limit.)

?

Figure 7.5: loss:norms2d: level sets of
the same p-norms

When p-norms are used to regularize weight vectors, the interest-
ing aspect is how they trade-off multiple features. To see the behavior
of p-norms in two dimensions, we can plot their contour (or level-
set). Figure 7.5 shows the contours for the same p norms in two
dimensions. Each line denotes the two-dimensional vectors to which
this norm assignes a total value of 1. By changing the value of p, you
can interpolate between a square (the so-called “max norm”), down
to a circle (2-norm), diamond (1-norm) and pointy-star-shaped-thing
(p < 1 norm).

The max norm corresponds to
limp→∞. Why is this called the max
norm?

?

In general, smaller values of p “prefer” sparser vectors. You can
see this by noticing that the contours of small p-norms “stretch”
out along the axes. It is for this reason that small p-norms tend to
yield weight vectors with many zero entries (aka sparse weight vec-
tors). Unfortunately, for p < 1 the norm becomes non-convex. As
you might guess, this means that the 1-norm is a popular choice for
sparsity-seeking applications.

linear models 93

A gradient is a multidimensional generalization of a derivative. Suppose you have a function
f : RD → R that takes a vector x = 〈x1, x2, . . . , xD〉 as input and produces a scalar value as output.
You can differentite this function according to any one of the inputs; for instance, you can compute ∂ f

∂x5
to get the derivative with respect to the fifth input. The gradient of f is just the vector consisting of the
derivative f with respect to each of its input coordinates independently, and is denoted ∇ f , or, when
the input to f is ambiguous, ∇x f . This is defined as:

∇x f =

〈
∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f

∂xD

〉
(7.11)

For example, consider the function f (x1, x2, x3) = x3
1 + 5x1x2 − 3x2x2

3. The gradient is:

∇x f =
〈

3x2
1 + 5x2 , 5x1 − 3x2

3 , − 6x2x3

〉
(7.12)

Note that if f : RD → R, then ∇ f : RD → RD. If you evaluate ∇ f (x), this will give you the gradient at
x, a vector in RD. This vector can be interpreted as the direction of steepest ascent: namely, if you were
to travel an infinitesimal amount in the direction of the gradient, you would go uphill (i.e., increase f)
the most.

MATH REVIEW | GRADIENTS

Figure 7.6:

7.4 Optimization with Gradient Descent

Envision the following problem. You’re taking up a new hobby:
blindfolded mountain climbing. Someone blindfolds you and drops
you on the side of a mountain. Your goal is to get to the peak of the
mountain as quickly as possible. All you can do is feel the mountain
where you are standing, and take steps. How would you get to the
top of the mountain? Perhaps you would feel to find out what direc-
tion feels the most “upward” and take a step in that direction. If you
do this repeatedly, you might hope to get the the top of the moun-
tain. (Actually, if your friend promises always to drop you on purely
concave mountains, you will eventually get to the peak!)

The idea of gradient-based methods of optimization is exactly the
same. Suppose you are trying to find the maximum of a function
f (x). The optimizer maintains a current estimate of the parameter of
interest, x. At each step, it measures the gradient of the function it is
trying to optimize. This measurement occurs at the current location,
x. Call the gradient g. It then takes a step in the direction of the
gradient, where the size of the step is controlled by a parameter η

(eta). The complete step is x ← x + ηg. This is the basic idea of
gradient ascent.

The opposite of gradient ascent is gradient descent. All of our

94 a course in machine learning

Algorithm 21 GradientDescent(F , K, η1, . . .)
1: z(0) ← 〈0, 0, . . . , 0〉 // initialize variable we are optimizing
2: for k = 1 . . . K do
3: g(k) ← ∇zF|z(k-1) // compute gradient at current location
4: z(k) ← z(k-1) − η(k)g(k) // take a step down the gradient
5: end for
6: return z(K)

learning problems will be framed as minimization problems (trying
to reach the bottom of a ditch, rather than the top of a hill). There-
fore, descent is the primary approach you will use. One of the major
conditions for gradient ascent being able to find the true, global min-
imum, of its objective function is convexity. Without convexity, all is
lost.

The gradient descent algorithm is sketched in Algorithm 7.4.
The function takes as arguments the function F to be minimized,
the number of iterations K to run and a sequence of learning rates
η1, . . . , ηK. (This is to address the case that you might want to start
your mountain climbing taking large steps, but only take small steps
when you are close to the peak.)

The only real work you need to do to apply a gradient descent
method is be able to compute derivatives. For concreteness, suppose
that you choose exponential loss as a loss function and the 2-norm as
a regularizer. Then, the regularized objective function is:

L(w, b) = ∑
n

exp
[
− yn(w · xn + b)

]
+

λ

2
||w||2 (7.13)

The only “strange” thing in this objective is that we have replaced
λ with λ

2 . The reason for this change is just to make the gradients
cleaner. We can first compute derivatives with respect to b:

∂L
∂b

=
∂

∂b ∑
n

exp
[
− yn(w · xn + b)

]
+

∂

∂b
λ

2
||w||2 (7.14)

= ∑
n

∂

∂b
exp

[
− yn(w · xn + b)

]
+ 0 (7.15)

= ∑
n

(
∂

∂b
− yn(w · xn + b)

)
exp

[
− yn(w · xn + b)

]
(7.16)

= −∑
n

yn exp
[
− yn(w · xn + b)

]
(7.17)

Before proceeding, it is worth thinking about what this says. From a
practical perspective, the optimization will operate by updating b ←
b − η ∂L

∂b . Consider positive examples: examples with yn = +1. We
would hope for these examples that the current prediction, w · xn + b,
is as large as possible. As this value tends toward ∞, the term in the
exp[] goes to zero. Thus, such points will not contribute to the step.

linear models 95

However, if the current prediction is small, then the exp[] term will
be positive and non-zero. This means that the bias term b will be
increased, which is exactly what you would want. Moreover, once all
points are very well classified, the derivative goes to zero. This considered the case of posi-

tive examples. What happens with
negative examples?

?Now that we have done the easy case, let’s do the gradient with
respect to w.

∇wL = ∇w ∑
n

exp
[
− yn(w · xn + b)

]
+∇w

λ

2
||w||2 (7.18)

= ∑
n
(∇w − yn(w · xn + b)) exp

[
− yn(w · xn + b)

]
+ λw

(7.19)

= −∑
n

ynxn exp
[
− yn(w · xn + b)

]
+ λw (7.20)

Now you can repeat the previous exercise. The update is of the form
w ← w − η∇wL. For well classified points (ones that tend toward
yn∞), the gradient is near zero. For poorly classified points, the gra-
dient points in the direction −ynxn, so the update is of the form
w ← w + cynxn, where c is some constant. This is just like the per-
ceptron update! Note that c is large for very poorly classified points
and small for relatively well classified points.

By looking at the part of the gradient related to the regularizer,
the update says: w ← w − λw = (1− λ)w. This has the effect of
shrinking the weights toward zero. This is exactly what we expect the
regulaizer to be doing!

Figure 7.7: good and bad step sizes

The success of gradient descent hinges on appropriate choices
for the step size. Figure 7.7 shows what can happen with gradient
descent with poorly chosen step sizes. If the step size is too big, you
can accidentally step over the optimum and end up oscillating. If the
step size is too small, it will take way too long to get to the optimum.
For a well-chosen step size, you can show that gradient descent will
approach the optimal value at a fast rate. The notion of convergence
here is that the objective value converges to the true minimum.

Theorem 8 (Gradient Descent Convergence). Under suitable condi-
tions1, for an appropriately chosen constant step size (i.e., η1 = η2, · · · = 1 Specifically the function to be opti-

mized needs to be strongly convex.
This is true for all our problems, pro-
vided λ > 0. For λ = 0 the rate could
be as bad as O(1/

√
k).

η), the convergence rate of gradient descent is O(1/k). More specifi-
cally, letting z∗ be the global minimum of F , we have: F (z(k))−F (z∗) ≤
2||z(0)−z∗||2

ηk .

A naive reading of this theorem
seems to say that you should choose
huge values of η. It should be obvi-
ous that this cannot be right. What
is missing?

?
The proof of this theorem is a bit complicated because it makes

heavy use of some linear algebra. The key is to set the learning rate
to 1/L, where L is the maximum curvature of the function that is
being optimized. The curvature is simply the “size” of the second
derivative. Functions with high curvature have gradients that change

96 a course in machine learning

quickly, which means that you need to take small steps to avoid
overstepping the optimum.

This convergence result suggests a simple approach to decid-
ing when to stop optimizing: wait until the objective function stops
changing by much. An alternative is to wait until the parameters stop
changing by much. A final example is to do what you did for percep-
tron: early stopping. Every iteration, you can check the performance
of the current model on some held-out data, and stop optimizing
when performance plateaus.

7.5 From Gradients to Subgradients

As a good exercise, you should try deriving gradient descent update
rules for the different loss functions and different regularizers you’ve
learned about. However, if you do this, you might notice that hinge
loss and the 1-norm regularizer are not differentiable everywhere! In
particular, the 1-norm is not differentiable around wd = 0, and the
hinge loss is not differentiable around yŷ = 1.

The solution to this is to use subgradient optimization. One way
to think about subgradients is just to not think about it: you essen-
tially need to just ignore the fact that you forgot that your function
wasn’t differentiable, and just try to apply gradient descent anyway.

To be more concrete, consider the hinge function f (z) = max{0, 1−
z}. This function is differentiable for z > 1 and differentiable for
z < 1, but not differentiable at z = 1. You can derive this using
differentiation by parts:

∂

∂z
f (z) =

∂

∂z

{
0 if z > 1
1− z if z < 1

(7.21)

=

{
∂
∂z 0 if z > 1
∂
∂z (1− z) if z < 1

(7.22)

=

{
0 if z ≥ 1
−1 if z < 1

(7.23)

Figure 7.8: hinge loss with sub

Thus, the derivative is zero for z < 1 and −1 for z > 1, matching
intuition from the Figure. At the non-differentiable point, z = 1,
we can use a subderivative: a generalization of derivatives to non-
differentiable functions. Intuitively, you can think of the derivative
of f at z as the tangent line. Namely, it is the line that touches f at
z that is always below f (for convex functions). The subderivative,
denoted ∂∂∂ f , is the set of all such lines. At differentiable positions,
this set consists just of the actual derivative. At non-differentiable
positions, this contains all slopes that define lines that always lie
under the function and make contact at the operating point. This is

linear models 97

Algorithm 22 HingeRegularizedGD(D, λ, MaxIter)
1: w ← 〈0, 0, . . . 0〉 , b ← 0 // initialize weights and bias
2: for iter = 1 . . . MaxIter do
3: g ← 〈0, 0, . . . 0〉 , g ← 0 // initialize gradient of weights and bias
4: for all (x,y) ∈ D do
5: if y(w · x + b) ≤ 1 then
6: g ← g + y x // update weight gradient
7: g ← g + y // update bias derivative
8: end if
9: end for

10: g ← g − λw // add in regularization term
11: w ← w + ηg // update weights
12: b ← b + ηg // update bias
13: end for
14: return w, b

shown pictorally in Figure 7.8, where example subderivatives are
shown for the hinge loss function. In the particular case of hinge loss,
any value between 0 and −1 is a valid subderivative at z = 0. In fact,
the subderivative is always a closed set of the form [a, b], where a and
b can be derived by looking at limits from the left and right.

This gives you a way of computing derivative-like things for non-
differentiable functions. Take hinge loss as an example. For a given
example n, the subgradient of hinge loss can be computed as:

∂∂∂w max{0, 1− yn(w · xn + b)} (7.24)

= ∂∂∂w

{
0 if yn(w · xn + b) > 1
1− yn(w · xn + b) otherwise

(7.25)

=

{
∂∂∂w0 if yn(w · xn + b) > 1
∂∂∂w1− yn(w · xn + b) otherwise

(7.26)

=

{
0 if yn(w · xn + b) > 1
−ynxn otherwise

(7.27)

If you plug this subgradient form into Algorithm 7.4, you obtain
Algorithm 7.5. This is the subgradient descent for regularized hinge
loss (with a 2-norm regularizer).

7.6 Closed-form Optimization for Squared Loss

Although gradient descent is a good, generic optimization algorithm,
there are cases when you can do better. An example is the case of a
2-norm regularizer and squared error loss function. For this, you can
actually obtain a closed form solution for the optimal weights. How-
ever, to obtain this, you need to rewrite the optimization problem in
terms of matrix operations. For simplicity, we will only consider the

98 a course in machine learning

If A and B are matrices, and A is N×K and B is K×M (the inner dimensions must match), then the ma-
trix product AB is a matrix C that is N×M, with Cn,m = ∑k An,kBk,m. If v is a vector in RD, we will
treat is as a column vector, or a matrix of size D×1. Thus, Av is well defined if A is D×M, and the result-
ing product is a vector u with um = ∑d Ad,mvd.

Aside from matrix product, a fundamental matrix operation is inversion. We will often encounter a
form like Ax = y, where A and y are known and we want to solve for A. If A is square of size N×N,
then the inverse of A, denoted A−1, is also a square matrix of size N×N, such that AA−1 = IN = A−1A.
I.e., multiplying a matrix by its inverse (on either side) gives back the identity matrix. Using this, we
can solve Ax = y by multiplying both sides by A−1 on the left (recall that order matters in matrix mul-
tiplication), yielding A−1Ax = A−1y from which we can conclude x = A−1y. Note that not all square
matrices are invertible. For instance, the all zeros matrix does not have an inverse (in the same way
that 1/0 is not defined for scalars). However, there are other matrices that do not have inverses; such
matrices are called singular.

MATH REVIEW | MATRIX MULTIPLICATION AND INVERSION

Figure 7.9:

unbiased version, but the extension is Exercise ??. This is precisely the
linear regression setting.

You can think of the training data as a large matrix X of size N×D,
where Xn,d is the value of the dth feature on the nth example. You
can think of the labels as a column (“tall”) vector Y of dimension N.
Finally, you can think of the weights as a column vector w of size
D. Thus, the matrix-vector product a = Xw has dimension N. In
particular:

an = [Xw]n = ∑
d

Xn,dwd (7.28)

This means, in particular, that a is actually the predictions of the
model. Instead of calling this a, we will call it Ŷ . The squared error
says that we should minimize 1

2 ∑n(Ŷn − Yn)2, which can be written

in vector form as a minimization of 1
2

∣∣∣∣Ŷ − Y
∣∣∣∣2. Verify that the squared error can

actually be written as this vector
norm.

?This can be expanded visually as:


x1,1 x1,2 . . . x1,D

x2,1 x2,2 . . . x2,D
...

...
. . .

...
xN,1 xN,2 . . . xN,D


︸ ︷︷ ︸

X


w1

w2
...

wD


︸ ︷︷ ︸

w

=


∑d x1,dwd

∑d x2,dwd
...

∑d xN,dwd


︸ ︷︷ ︸

Ŷ

≈


y1

y2
...

yN


︸ ︷︷ ︸

Ŷ

(7.29)

linear models 99

So, compactly, our optimization problem can be written as:

min
w

L(w) =
1
2
||Xw− Y ||2 + λ

2
||w||2 (7.30)

If you recall from calculus, you can minimize a function by setting its
derivative to zero. We start with the weights w and take gradients:

∇wL(w) = X> (Xw− Y) + λw (7.31)

= X>Xw− X>Y + λw (7.32)

=
(

X>X + λI
)

w− X>Y (7.33)

We can equate this to zero and solve, yielding:(
X>X + λI

)
w− X>Y = 0 (7.34)

⇐⇒
(

X>X + λID

)
w = X>Y (7.35)

⇐⇒ w =
(

X>X + λID

)
−1X>Y (7.36)

Thus, the optimal solution of the weights can be computed by a few
matrix multiplications and a matrix inversion. As a sanity check,
you can make sure that the dimensions match. The matrix X>X has
dimension D×D, and therefore so does the inverse term. The inverse
is D×D and X> is D×N, so that product is D×N. Multiplying through
by the N×1 vector Y yields a D×1 vector, which is precisely what we
want for the weights. For those who are keen on linear

algebra, you might be worried that
the matrix you must invert might
not be invertible. Is this actually a
problem?

?
Note that this gives an exact solution, modulo numerical innacu-

racies with computing matrix inverses. In contrast, gradient descent
will give you progressively better solutions and will “eventually”
converge to the optimum at a rate of 1/k. This means that if you
want an answer that’s within an accuracy of ε = 10−4, you will need
something on the order of one thousand steps.

The question is whether getting this exact solution is always more
efficient. To run gradient descent for one step will take O(ND) time,
with a relatively small constant. You will have to run K iterations,
yielding an overall runtime of O(KND). On the other hand, the
closed form solution requires constructing X>X, which takes O(D2N)

time. The inversion take O(D3) time using standard matrix inver-
sion routines. The final multiplications take O(ND) time. Thus, the
overall runtime is on the order O(D3 + D2N). In most standard cases
(though this is becoming less true over time), N > D, so this is domi-
nated by O(D2N).

Thus, the overall question is whether you will need to run more
than D-many iterations of gradient descent. If so, then the matrix
inversion will be (roughly) faster. Otherwise, gradient descent will
be (roughly) faster. For low- and medium-dimensional problems (say,

100 a course in machine learning

D ≤ 100), it is probably faster to do the closed form solution via
matrix inversion. For high dimensional problems (D ≥ 10, 000), it is
probably faster to do gradient descent. For things in the middle, it’s
hard to say for sure.

7.7 Support Vector Machines

At the beginning of this chapter, you may have looked at the convex
surrogate loss functions and asked yourself: where did these come
from?! They are all derived from different underlying principles,
which essentially correspond to different inductive biases.

Figure 7.10: picture of data points with
three hyperplanes, RGB with G the best

Let’s start by thinking back to the original goal of linear classifiers:
to find a hyperplane that separates the positive training examples
from the negative ones. Figure 7.10 shows some data and three po-
tential hyperplanes: red, green and blue. Which one do you like best?

Most likely you chose the green hyperplane. And most likely you
chose it because it was furthest away from the closest training points.
In other words, it had a large margin. The desire for hyperplanes
with large margins is a perfect example of an inductive bias. The data
does not tell us which of the three hyperplanes is best: we have to
choose one using some other source of information.

Following this line of thinking leads us to the support vector ma-
chine (SVM). This is simply a way of setting up an optimization
problem that attempts to find a separating hyperplane with as large
a margin as possible. It is written as a constrained optimization
problem:

min
w,b

1
γ(w, b)

(7.37)

subj. to yn (w · xn + b) ≥ 1 (∀n)

In this optimization, you are trying to find parameters that maximize
the margin, denoted γ, (i.e., minimize the reciprocal of the margin)
subject to the constraint that all training examples are correctly classi-
fied.

Figure 7.11: hyperplane with margins
on sides

The “odd” thing about this optimization problem is that we re-
quire the classification of each point to be greater than one rather than
simply greater than zero. However, the problem doesn’t fundamen-
tally change if you replace the “1” with any other positive constant
(see Exercise ??). As shown in Figure 7.11, the constant one can be
interpreted visually as ensuring that there is a non-trivial margin
between the positive points and negative points.

The difficulty with the optimization problem in Eq (7.37) is what
happens with data that is not linearly separable. In that case, there
is no set of parameters w, b that can simultaneously satisfy all the

linear models 101

constraints. In optimization terms, you would say that the feasible
region is empty. (The feasible region is simply the set of all parame-
ters that satify the constraints.) For this reason, this is refered to as
the hard-margin SVM, because enforcing the margin is a hard con-
straint. The question is: how to modify this optimization problem so
that it can handle inseparable data.

Figure 7.12: one bad point with slack

The key idea is the use of slack parameters. The intuition behind
slack parameters is the following. Suppose we find a set of param-
eters w, b that do a really good job on 9999 data points. The points
are perfectly classifed and you achieve a large margin. But there’s
one pesky data point left that cannot be put on the proper side of the
margin: perhaps it is noisy. (See Figure 7.12.) You want to be able
to pretend that you can “move” that point across the hyperplane on
to the proper side. You will have to pay a little bit to do so, but as
long as you aren’t moving a lot of points around, it should be a good
idea to do this. In this picture, the amount that you move the point is
denoted ξ (xi).

By introducing one slack parameter for each training example,
and penalizing yourself for having to use slack, you can create an
objective function like the following, soft-margin SVM:

min
w,b,ξ

1
γ(w, b)︸ ︷︷ ︸

large margin

+ C ∑
n

ξn︸ ︷︷ ︸
small slack

(7.38)

subj. to yn (w · xn + b) ≥ 1− ξn (∀n)

ξn ≥ 0 (∀n)

The goal of this objective function is to ensure that all points are
correctly classified (the first constraint). But if a point n cannot be
correctly classified, then you can set the slack ξn to something greater
than zero to “move” it in the correct direction. However, for all non-
zero slacks, you have to pay in the objective function proportional to
the amount of slack. The hyperparameter C > 0 controls overfitting
versus underfitting. The second constraint simply says that you must
not have negative slack. What values of C will lead to over-

fitting? What values will lead to
underfitting?

?One major advantage of the soft-margin SVM over the original
hard-margin SVM is that the feasible region is never empty. That is,
there is always going to be some solution, regardless of whether your
training data is linearly separable or not.

Suppose I give you a data set.
Without even looking at the data,
construct for me a feasible solution
to the soft-margin SVM. What is
the value of the objective for this
solution?

?

It’s one thing to write down an optimization problem. It’s another
thing to try to solve it. There are a very large number of ways to
optimize SVMs, essentially because they are such a popular learning
model. Here, we will talk just about one, very simple way. More
complex methods will be discussed later in this book once you have a
bit more background.

102 a course in machine learning

To make progress, you need to be able to measure the size of the
margin. Suppose someone gives you parameters w, b that optimize
the hard-margin SVM. We wish to measure the size of the margin.
The first observation is that the hyperplane will lie exactly halfway
between the nearest positive point and nearest negative point. If not,
the margin could be made bigger by simply sliding it one way or the
other by adjusting the bias b.

Figure 7.13: copy of figure from p5 of
cs544 svm tutorial

By this observation, there is some positive example that that lies
exactly 1 unit from the hyperplane. Call it x+, so that w · x+ + b = 1.
Similarly, there is some negative example, x−, that lies exactly on
the other side of the margin: for which w · x− + b = −1. These two
points, x+ and x− give us a way to measure the size of the margin.
As shown in Figure 7.11, we can measure the size of the margin by
looking at the difference between the lengths of projections of x+

and x− onto the hyperplane. Since projection requires a normalized
vector, we can measure the distances as:

d+ =
1
||w||w · x

+ + b− 1 (7.39)

d− = − 1
||w||w · x

− − b + 1 (7.40)

We can then compute the margin by algebra:

γ =
1
2
[
d+ − d−

]
(7.41)

=
1
2

[
1
||w||w · x

+ + b− 1− 1
||w||w · x

− − b + 1
]

(7.42)

=
1
2

[
1
||w||w · x

+ − 1
||w||w · x

−
]

(7.43)

=
1
2

[
1
||w|| (+1)− 1

||w|| (−1)
]

(7.44)

=
1
||w|| (7.45)

This is a remarkable conclusion: the size of the margin is inversely
proportional to the norm of the weight vector. Thus, maximizing the
margin is equivalent to minimizing ||w||! This serves as an addi-
tional justification of the 2-norm regularizer: having small weights
means having large margins!

However, our goal wasn’t to justify the regularizer: it was to un-
derstand hinge loss. So let us go back to the soft-margin SVM and
plug in our new knowledge about margins:

min
w,b,ξ

1
2
||w||2︸ ︷︷ ︸

large margin

+ C ∑
n

ξn︸ ︷︷ ︸
small slack

(7.46)

linear models 103

subj. to yn (w · xn + b) ≥ 1− ξn (∀n)

ξn ≥ 0 (∀n)

Now, let’s play a thought experiment. Suppose someone handed
you a solution to this optimization problem that consisted of weights
(w) and a bias (b), but they forgot to give you the slacks. Could you
recover the slacks from the information you have?

In fact, the answer is yes! For simplicity, let’s consider positive
examples. Suppose that you look at some positive example xn. You
need to figure out what the slack, ξn, would have been. There are two
cases. Either w · xn + b is at least 1 or it is not. If it’s large enough,
then you want to set ξn = 0. Why? It cannot be less than zero by the
second constraint. Moreover, if you set it greater than zero, you will
“pay” unnecessarily in the objective. So in this case, ξn = 0. Next,
suppose that w · xn + b = 0.2, so it is not big enough. In order to
satisfy the first constraint, you’ll need to set ξn ≥ 0.8. But because
of the objective, you’ll not want to set it any larger than necessary, so
you’ll set ξn = 0.8 exactly.

Following this argument through for both positive and negative
points, if someone gives you solutions for w, b, you can automatically
compute the optimal ξ variables as:

ξn =

{
0 if yn(w · xn + b) ≥ 1
1− yn(w · xn + b) otherwise

(7.47)

In other words, the optimal value for a slack variable is exactly the
hinge loss on the corresponding example! Thus, we can write the
SVM objective as an unconstrained optimization problem:

min
w,b

1
2
||w||2︸ ︷︷ ︸

large margin

+C ∑
n
`(hin)(yn, w · xn + b)︸ ︷︷ ︸

small slack

(7.48)

Multiplying this objective through by λ/C, we obtain exactly the reg-
ularized objective from Eq (7.8) with hinge loss as the loss function
and the 2-norm as the regularizer!

7.8 Further Reading

TODO further reading

	Linear Models
	The Optimization Framework for Linear Models
	Convex Surrogate Loss Functions
	Weight Regularization
	Optimization with Gradient Descent
	From Gradients to Subgradients
	Closed-form Optimization for Squared Loss
	Support Vector Machines
	Further Reading

