
2 | LIMITS OF LEARNING

Dependencies: None.

Machine learning is a very general and useful framework,
but it is not “magic” and will not always work. In order to better
understand when it will and when it will not work, it is useful to
formalize the learning problem more. This will also help us develop
debugging strategies for learning algorithms.

2.1 Data Generating Distributions

Our underlying assumption for the majority of this book is that
learning problems are characterized by some unknown probability
distribution D over input/output pairs (x, y) ∈ X×Y . Suppose that
someone told you what D was. In particular, they gave you a Python
function computeD that took two inputs, x and y, and returned the
probability of that x, y pair under D. If you had access to such a func-
tion, classification becomes simple. We can define the Bayes optimal
classifier as the classifier that, for any test input x̂, simply returns the
ŷ that maximizes computeD(x̂, ŷ), or, more formally:

f (BO)(x̂) = arg max
ŷ∈Y
D(x̂, ŷ) (2.1)

This classifier is optimal in one specific sense: of all possible classifiers,
it achieves the smallest zero/one error.

Theorem 1 (Bayes Optimal Classifier). The Bayes Optimal Classifier
f (BO) achieves minimal zero/one error of any deterministic classifier.

This theorem assumes that you are comparing against deterministic
classifiers. You can actually prove a stronger result that f (BO) is opti-
mal for randomized classifiers as well, but the proof is a bit messier.
However, the intuition is the same: for a given x, f (BO) chooses the
label with highest probability, thus minimizing the probability that it
makes an error.

Proof of Theorem 1. Consider some other classifier g that claims to
be better than f (BO). Then, there must be some x on which g(x) 6=

Learning Objectives:
• Define “inductive bias” and recog-

nize the role of inductive bias in
learning.

• Illustrate how regularization trades
off between underfitting and overfit-
ting.

• Evaluate whether a use of test data
is “cheating” or not.

Our lives sometimes depend on computers performing as pre-
dicted. – Philip Emeagwali



20 a course in machine learning

f (BO)(x). Fix such an x. Now, the probability that f (BO) makes an error
on this particular x is 1− D(x, f (BO)(x)) and the probability that g
makes an error on this x is 1− D(x, g(x)). But f (BO) was chosen in
such a way to maximize D(x, f (BO)(x)), so this must be greater than
D(x, g(x)). Thus, the probability that f (BO) errs on this particular x is
smaller than the probability that g errs on it. This applies to any x for
which f (BO)(x) 6= g(x) and therefore f (BO) achieves smaller zero/one
error than any g.

The Bayes error rate (or Bayes optimal error rate) is the error
rate of the Bayes optimal classifier. It is the best error rate you can
ever hope to achieve on this classification problem (under zero/one
loss). The take-home message is that if someone gave you access to
the data distribution, forming an optimal classifier would be trivial.
Unfortunately, no one gave you this distribution, so we need to figure
out ways of learning the mapping from x to y given only access to a
training set sampled from D, rather than D itself.

2.2 Inductive Bias: What We Know Before the Data Arrives

class A

cl
as

s
B

Figure 2.1: Training data for a binary
classification problem.

Figure 2.2: Test data for the same
classification problem.

In Figure 2.1 you’ll find training data for a binary classification prob-
lem. The two labels are “A” and “B” and you can see four examples
for each label. Below, in Figure 2.2, you will see some test data. These
images are left unlabeled. Go through quickly and, based on the
training data, label these images. (Really do it before you read fur-
ther! I’ll wait!)

Most likely you produced one of two labelings: either ABBA or
AABB. Which of these solutions is right? The answer is that you can-
not tell based on the training data. If you give this same example
to 100 people, 60− 70 of them come up with the ABBA prediction
and 30− 40 come up with the AABB prediction. Why? Presumably
because the first group believes that the relevant distinction is be-
tween “bird” and “non-bird” while the second group believes that
the relevant distinction is between “fly” and “no-fly.”

This preference for one distinction (bird/non-bird) over another
(fly/no-fly) is a bias that different human learners have. In the con-
text of machine learning, it is called inductive bias: in the absense of
data that narrow down the relevant concept, what type of solutions
are we more likely to prefer? Two thirds of people seem to have an
inductive bias in favor of bird/non-bird, and one third seem to have
an inductive bias in favor of fly/no-fly.

It is also possible that the correct
classification on the test data is
ABAB. This corresponds to the bias
“is the background in focus.” Some-
how no one seems to come up with
this classification rule.

?

Throughout this book you will learn about several approaches to
machine learning. The decision tree model is the first such approach.
These approaches differ primarily in the sort of inductive bias that



limits of learning 21

they exhibit.
Consider a variant of the decision tree learning algorithm. In this

variant, we will not allow the trees to grow beyond some pre-defined
maximum depth, d. That is, once we have queried on d-many fea-
tures, we cannot query on any more and must just make the best
guess we can at that point. This variant is called a shallow decision
tree.

The key question is: What is the inductive bias of shallow decision
trees? Roughly, their bias is that decisions can be made by only look-
ing at a small number of features. For instance, a shallow decision
tree would be very good at learning a function like “students only
like AI courses.” It would be very bad at learning a function like “if
this student has liked an odd number of their past courses, they will
like the next one; otherwise they will not.” This latter is the parity
function, which requires you to inspect every feature to make a pre-
diction. The inductive bias of a decision tree is that the sorts of things
we want to learn to predict are more like the first example and less
like the second example.

2.3 Not Everything is Learnable

Although machine learning works well—perhaps astonishingly
well—in many cases, it is important to keep in mind that it is not
magical. There are many reasons why a machine learning algorithm
might fail on some learning task.

There could be noise in the training data. Noise can occur both
at the feature level and at the label level. Some features might corre-
spond to measurements taken by sensors. For instance, a robot might
use a laser range finder to compute its distance to a wall. However,
this sensor might fail and return an incorrect value. In a sentiment
classification problem, someone might have a typo in their review of
a course. These would lead to noise at the feature level. There might
also be noise at the label level. A student might write a scathingly
negative review of a course, but then accidentally click the wrong
button for the course rating.

The features available for learning might simply be insufficient.
For example, in a medical context, you might wish to diagnose
whether a patient has cancer or not. You may be able to collect a
large amount of data about this patient, such as gene expressions,
X-rays, family histories, etc. But, even knowing all of this information
exactly, it might still be impossible to judge for sure whether this pa-
tient has cancer or not. As a more contrived example, you might try
to classify course reviews as positive or negative. But you may have
erred when downloading the data and only gotten the first five char-



22 a course in machine learning

acters of each review. If you had the rest of the features you might
be able to do well. But with this limited feature set, there’s not much
you can do.

Some examples may not have a single correct answer. You might
be building a system for “safe web search,” which removes offen-
sive web pages from search results. To build this system, you would
collect a set of web pages and ask people to classify them as “offen-
sive” or not. However, what one person considers offensive might be
completely reasonable for another person. It is common to consider
this as a form of label noise. Nevertheless, since you, as the designer
of the learning system, have some control over this problem, it is
sometimes helpful to isolate it as a source of difficulty.

Finally, learning might fail because the inductive bias of the learn-
ing algorithm is too far away from the concept that is being learned.
In the bird/non-bird data, you might think that if you had gotten
a few more training examples, you might have been able to tell
whether this was intended to be a bird/non-bird classification or a
fly/no-fly classification. However, no one I’ve talked to has ever come
up with the “background is in focus” classification. Even with many
more training points, this is such an unusual distinction that it may
be hard for anyone to figure out it. In this case, the inductive bias of
the learner is simply too misaligned with the target classification to
learn.

Note that the inductive bias source of error is fundamentally dif-
ferent than the other three sources of error. In the inductive bias case,
it is the particular learning algorithm that you are using that cannot
cope with the data. Maybe if you switched to a different learning
algorithm, you would be able to learn well. For instance, Neptunians
might have evolved to care greatly about whether backgrounds are
in focus, and for them this would be an easy classification to learn.
For the other three sources of error, it is not an issue to do with the
particular learning algorithm. The error is a fundamental part of the
learning problem.

2.4 Underfitting and Overfitting

As with many problems, it is useful to think about the extreme cases
of learning algorithms. In particular, the extreme cases of decision
trees. In one extreme, the tree is “empty” and we do not ask any
questions at all. We simply immediately make a prediction. In the
other extreme, the tree is “full.” That is, every possible question
is asked along every branch. In the full tree, there may be leaves
with no associated training data. For these we must simply choose
arbitrarily whether to say “yes” or “no.”



limits of learning 23

Consider the course recommendation data from Table 1. Sup-
pose we were to build an “empty” decision tree on this data. Such a
decision tree will make the same prediction regardless of its input,
because it is not allowed to ask any questions about its input. Since
there are more “likes” than “hates” in the training data (12 versus
8), our empty decision tree will simply always predict “likes.” The
training error, ε̂, is 8/20 = 40%.

On the other hand, we could build a “full” decision tree. Since
each row in this data is unique, we can guarantee that any leaf in a
full decision tree will have either 0 or 1 examples assigned to it (20
of the leaves will have one example; the rest will have none). For the
leaves corresponding to training points, the full decision tree will
always make the correct prediction. Given this, the training error, ε̂, is
0/20 = 0%.

Of course our goal is not to build a model that gets 0% error on
the training data. This would be easy! Our goal is a model that will
do well on future, unseen data. How well might we expect these two
models to do on future data? The “empty” tree is likely to do not
much better and not much worse on future data. We might expect
that it would continue to get around 40% error.

Life is more complicated for the “full” decision tree. Certainly
if it is given a test example that is identical to one of the training
examples, it will do the right thing (assuming no noise). But for
everything else, it will only get about 50% error. This means that
even if every other test point happens to be identical to one of the
training points, it would only get about 25% error. In practice, this is
probably optimistic, and maybe only one in every 10 examples would
match a training example, yielding a 35% error. Convince yourself (either by proof

or by simulation) that even in the
case of imbalanced data – for in-
stance data that is on average 80%
positive and 20% negative – a pre-
dictor that guesses randomly (50/50

positive/negative) will get about
50% error.

?

So, in one case (empty tree) we’ve achieved about 40% error and
in the other case (full tree) we’ve achieved 35% error. This is not
very promising! One would hope to do better! In fact, you might
notice that if you simply queried on a single feature for this data, you
would be able to get very low training error, but wouldn’t be forced
to “guess” randomly.

Which feature is it, and what is it’s
training error??

This example illustrates the key concepts of underfitting and
overfitting. Underfitting is when you had the opportunity to learn
something but didn’t. A student who hasn’t studied much for an up-
coming exam will be underfit to the exam, and consequently will not
do well. This is also what the empty tree does. Overfitting is when
you pay too much attention to idiosyncracies of the training data,
and aren’t able to generalize well. Often this means that your model
is fitting noise, rather than whatever it is supposed to fit. A student
who memorizes answers to past exam questions without understand-
ing them has overfit the training data. Like the full tree, this student



24 a course in machine learning

Consider some random event, like spins of a roulette wheel, cars driving through an intersection, the
outcome of an election, or pasta being appropriately al dente. We often want to make a conclusion
about the entire population (the pot of pasta) based on a much smaller sample (biting a couple pieces
of pasta). The law of large numbers tells us that under mild conditions this is an okay thing to do.

Formally, suppose that v1, v2, . . . , vN are random variables (e.g., vn measures if the nth spaghetti is
al dente). Assume that these random variables are independent (i.e., v2 and v3 are uncorrelated—
they weren’t both taken from the same place in the pot) and identically distributed (they were all
drawn from the same population—pot—that we wish to measure). We can compute the sample av-
erage v̄ = 1

N ∑N
n=1 vn and under the strong law of large numbers, you can prove that v̄ → E[v] as

N → ∞. Namely, the empirical sample average approaches the population average as the number of
samples goes do infinity.

(Technical note: the notion of convergence here is almost sure convergence. In particular, the formal result is
that Pr

(
limN→∞

1
N ∑n vn = E[v]

)
= 1. Or, in words, with probability one the sample average reaches the

population average.)

MATH REVIEW | LAW OF LARGE NUMBERS

Figure 2.3:

also will not do well on the exam. A model that is neither overfit nor
underfit is the one that is expected to do best in the future.

2.5 Separation of Training and Test Data

Suppose that, after graduating, you get a job working for a company
that provides personalized recommendations for pottery. You go in
and implement new algorithms based on what you learned in your
machine learning class (you have learned the power of generaliza-
tion!). All you need to do now is convince your boss that you have
done a good job and deserve a raise!

How can you convince your boss that your fancy learning algo-
rithms are really working?

Based on what we’ve talked about already with underfitting and
overfitting, it is not enough to just tell your boss what your training
error is. Noise notwithstanding, it is easy to get a training error of
zero using a simple database query (or grep, if you prefer). Your boss
will not fall for that.

The easiest approach is to set aside some of your available data as
“test data” and use this to evaluate the performance of your learning
algorithm. For instance, the pottery recommendation service that you
work for might have collected 1000 examples of pottery ratings. You
will select 800 of these as training data and set aside the final 200



limits of learning 25

as test data. You will run your learning algorithms only on the 800
training points. Only once you’re done will you apply your learned
model to the 200 test points, and report your test error on those 200
points to your boss.

The hope in this process is that however well you do on the 200
test points will be indicative of how well you are likely to do in the
future. This is analogous to estimating support for a presidential
candidate by asking a small (random!) sample of people for their
opinions. Statistics (specifically, concentration bounds of which the
“Central limit theorem” is a famous example) tells us that if the sam-
ple is large enough, it will be a good representative. The 80/20 split
is not magic: it’s simply fairly well established. Occasionally people
use a 90/10 split instead, especially if they have a lot of data. If you have more data at your dis-

posal, why might a 90/10 split be
preferable to an 80/20 split?

?The cardinal rule of machine learning is: never touch your test
data. Ever. If that’s not clear enough:

Never ever touch your test data!
If there is only one thing you learn from this book, let it be that.

Do not look at your test data. Even once. Even a tiny peek. Once
you do that, it is not test data any more. Yes, perhaps your algorithm
hasn’t seen it. But you have. And you are likely a better learner than
your learning algorithm. Consciously or otherwise, you might make
decisions based on whatever you might have seen. Once you look at
the test data, your model’s performance on it is no longer indicative
of it’s performance on future unseen data. This is simply because
future data is unseen, but your “test” data no longer is.

2.6 Models, Parameters and Hyperparameters

The general approach to machine learning, which captures many ex-
isting learning algorithms, is the modeling approach. The idea is that
we come up with some formal model of our data. For instance, we
might model the classification decision of a student/course pair as a
decision tree. The choice of using a tree to represent this model is our
choice. We also could have used an arithmetic circuit or a polynomial
or some other function. The model tells us what sort of things we can
learn, and also tells us what our inductive bias is.

For most models, there will be associated parameters. These are
the things that we use the data to decide on. Parameters in a decision
tree include: the specific questions we asked, the order in which we
asked them, and the classification decisions at the leaves. The job of
our decision tree learning algorithm DecisionTreeTrain is to take
data and figure out a good set of parameters.



26 a course in machine learning

Many learning algorithms will have additional knobs that you can
adjust. In most cases, these knobs amount to tuning the inductive
bias of the algorithm. In the case of the decision tree, an obvious
knob that one can tune is the maximum depth of the decision tree.
That is, we could modify the DecisionTreeTrain function so that
it stops recursing once it reaches some pre-defined maximum depth.
By playing with this depth knob, we can adjust between underfitting
(the empty tree, depth= 0) and overfitting (the full tree, depth= ∞). Go back to the DecisionTree-

Train algorithm and modify it so
that it takes a maximum depth pa-
rameter. This should require adding
two lines of code and modifying
three others.

?
Such a knob is called a hyperparameter. It is so called because it

is a parameter that controls other parameters of the model. The exact
definition of hyperparameter is hard to pin down: it’s one of those
things that are easier to identify than define. However, one of the
key identifiers for hyperparameters (and the main reason that they
cause consternation) is that they cannot be naively adjusted using the
training data.

In DecisionTreeTrain, as in most machine learning, the learn-
ing algorithm is essentially trying to adjust the parameters of the
model so as to minimize training error. This suggests an idea for
choosing hyperparameters: choose them so that they minimize train-
ing error.

What is wrong with this suggestion? Suppose that you were to
treat “maximum depth” as a hyperparameter and tried to tune it on
your training data. To do this, maybe you simply build a collection
of decision trees, tree0, tree1, tree2, . . . , tree100, where treed is a tree
of maximum depth d. We then computed the training error of each
of these trees and chose the “ideal” maximum depth as that which
minimizes training error? Which one would it pick?

The answer is that it would pick d = 100. Or, in general, it would
pick d as large as possible. Why? Because choosing a bigger d will
never hurt on the training data. By making d larger, you are simply
encouraging overfitting. But by evaluating on the training data, over-
fitting actually looks like a good idea!

An alternative idea would be to tune the maximum depth on test
data. This is promising because test data peformance is what we
really want to optimize, so tuning this knob on the test data seems
like a good idea. That is, it won’t accidentally reward overfitting. Of
course, it breaks our cardinal rule about test data: that you should
never touch your test data. So that idea is immediately off the table.

However, our “test data” wasn’t magic. We simply took our 1000
examples, called 800 of them “training” data and called the other 200
“test” data. So instead, let’s do the following. Let’s take our original
1000 data points, and select 700 of them as training data. From the
remainder, take 100 as development data1 and the remaining 200 1 Some people call this “validation

data” or “held-out data.”as test data. The job of the development data is to allow us to tune



limits of learning 27

hyperparameters. The general approach is as follows:

1. Split your data into 70% training data, 10% development data and
20% test data.

2. For each possible setting of your hyperparameters:

(a) Train a model using that setting of hyperparameters on the
training data.

(b) Compute this model’s error rate on the development data.

3. From the above collection of models, choose the one that achieved
the lowest error rate on development data.

4. Evaluate that model on the test data to estimate future test perfor-
mance.

In step 3, you could either choose
the model (trained on the 70% train-
ing data) that did the best on the
development data. Or you could
choose the hyperparameter settings
that did best and retrain the model
on the 80% union of training and
development data. Is either of these
options obviously better or worse?

?
2.7 Real World Applications of Machine Learning

Figure 2.4 shows a typical sequence of decisions that must be made
to deploy a machine learning approach in the real world. In the left
column, you can see the generic decision being made. In the right
column, an example of this decision for the particular case of adver-
tising placement on a search engine we’ve built.

In this sequence, (1) we have some real world goal like increasing
revenue for our search engine, and decide to try to increase rev-
enue by (2) displaying better ads. We convert this task into a ma-
chine learning problem by (3) deciding to train a classifier to predict
whether a user will click on an ad or not. In order to apply machine
learning, we must collect some training data; in this case, (4) we col-
lect data by logging user interactions with the current system. We
must choose what to log; (5) we choose to log the ad being displayed,
the query the user entered into our search engine, and binary value
showing if they clicked or not.

1

real world
goal

increase
revenue

2
real world
mechanism

better ad
display

3
learning
problem

classify
click-through

4 data collection
interaction w/
current system

5 collected data query, ad, click

6

data
representation bow2, ± click

7
select model
family

decision trees,
depth 20

8
select training
data

subset from
april’16

9
train model &
hyperparams

final decision
tree

10
predict on test
data

subset from
may’16

11 evaluate error
zero/one loss
for ± click

12 deploy!
(hope we
achieve our
goal)

Figure 2.4: A typical design process for
a machine learning application.

In order to make these logs consumable by a machine learning
algorithm, (6) we convert the data into input/output pairs: in this
case, pairs of words from a bag-of-words representing the query and
a bag-of-words representing the ad as input, and the click as a ±
label. We then (7) select a model family (e.g., depth 20 decision trees),
and thereby an inductive bias, for instance depth ≤ 20 decision trees.

We’re now ready to (8) select a specific subset of data to use as
training data: in this case, data from April 2016. We split this into
training and development and (9) learn a final decision tree, tuning
the maximum depth on the development data. We can then use this
decision tree to (10) make predictions on some held-out test data, in



28 a course in machine learning

this case from the following month. We can (11) measure the overall
quality of our predictor as zero/one loss (clasification error) on this
test data and finally (12) deploy our system.

The important thing about this sequence of steps is that in any
one, things can go wrong. That is, between any two rows of this table,
we are necessarily accumulating some additional error against our
original real world goal of increasing revenue. For example, in step 5,
we decided on a representation that left out many possible variables
we could have logged, like time of day or season of year. By leaving
out those variables, we set an explicit upper bound on how well our
learned system can do.

It is often an effective strategy to run an oracle experiment. In an
oracle experiment, we assume that everything below some line can be
solved perfectly, and measure how much impact that will have on a
higher line. As an extreme example, before embarking on a machine
learning approach to the ad display problem, we should measure
something like: if our classifier were perfect, how much more money
would we make? If the number is not very high, perhaps there is
some better for our time.

Finally, although this sequence is denoted linearly, the entire pro-
cess is highly interactive in practice. A large part of “debugging”
machine learning (covered more extensively in Chapter 5 involves
trying to figure out where in this sequence the biggest losses are and
fixing that step. In general, it is often useful to build the stupidest thing
that could possibly work, then look at how well it’s doing, and decide if
and where to fix it.

2.8 Further Reading

TODO further reading


	Limits of Learning
	Data Generating Distributions
	Inductive Bias: What We Know Before the Data Arrives
	Not Everything is Learnable
	Underfitting and Overfitting
	Separation of Training and Test Data
	Models, Parameters and Hyperparameters
	Real World Applications of Machine Learning
	Further Reading


