Machine learning is a very general and useful framework, but it is not “magic” and will not always work. In order to better understand when it will and when it will not work, it is useful to formalize the learning problem more. This will also help us develop debugging strategies for learning algorithms.

2.1 Data Generating Distributions

Our underlying assumption for the majority of this book is that learning problems are characterized by some unknown probability distribution D over input/output pairs $(x, y) \in \mathcal{X} \times \mathcal{Y}$. Suppose that someone told you what D was. In particular, they gave you a Python function computeD that took two inputs, x and y, and returned the probability of that x, y pair under D. If you had access to such a function, classification becomes simple. We can define the Bayes optimal classifier as the classifier that, for any test input \hat{x}, simply returns the \hat{y} that maximizes $\text{computeD}(\hat{x}, \hat{y})$, or, more formally:

$$f^{(BO)}(\hat{x}) = \arg \max_{\hat{y} \in \mathcal{Y}} D(\hat{x}, \hat{y})$$

(2.1)

This classifier is optimal in one specific sense: of all possible classifiers, it achieves the smallest zero/one error.

Theorem 1 (Bayes Optimal Classifier). The Bayes Optimal Classifier $f^{(BO)}$ achieves minimal zero/one error of any deterministic classifier.

This theorem assumes that you are comparing against deterministic classifiers. You can actually prove a stronger result that $f^{(BO)}$ is optimal for randomized classifiers as well, but the proof is a bit messier. However, the intuition is the same: for a given x, $f^{(BO)}$ chooses the label with highest probability, thus minimizing the probability that it makes an error.

Proof of Theorem 1. Consider some other classifier g that claims to be better than $f^{(BO)}$. Then, there must be some x on which $g(x) \neq f^{(BO)}(x)$. Theorem 1 assumes that you are comparing against deterministic classifiers.
\(f^{(BO)}(x) \). Fix such an \(x \). Now, the probability that \(f^{(BO)} \) makes an error on this particular \(x \) is \(1 - D(x, f^{(BO)}(x)) \) and the probability that \(g \) makes an error on this \(x \) is \(1 - D(x, g(x)) \). But \(f^{(BO)} \) was chosen in such a way to maximize \(D(x, f^{(BO)}(x)) \), so this must be greater than \(D(x, g(x)) \). Thus, the probability that \(f^{(BO)} \) errs on this particular \(x \) is smaller than the probability that \(g \) errs on it. This applies to any \(x \) for which \(f^{(BO)}(x) \neq g(x) \) and therefore \(f^{(BO)} \) achieves smaller zero/one error than any \(g \).

The **Bayes error rate** (or **Bayes optimal error rate**) is the error rate of the Bayes optimal classifier. It is the best error rate you can ever hope to achieve on this classification problem (under zero/one loss). The take-home message is that if someone gave you access to the data distribution, forming an optimal classifier would be trivial. Unfortunately, no one gave you this distribution, so we need to figure out ways of learning the mapping from \(x \) to \(y \) given only access to a training set sampled from \(D \), rather than \(D \) itself.

2.2 Inductive Bias: What We Know Before the Data Arrives

In Figure 2.1 you’ll find training data for a binary classification problem. The two labels are “A” and “B” and you can see four examples for each label. Below, in Figure 2.2, you will see some test data. These images are left unlabeled. Go through quickly and, based on the training data, label these images. (Really do it before you read further! I’ll wait!)

Most likely you produced one of two labelings: either ABBA or AABB. Which of these solutions is right? The answer is that you cannot tell based on the training data. If you give this same example to 100 people, 60 – 70 of them come up with the ABBA prediction and 30 – 40 come up with the AABB prediction. Why? Presumably because the first group believes that the relevant distinction is between “bird” and “non-bird” while the second group believes that the relevant distinction is between “fly” and “no-fly.”

This preference for one distinction (bird/non-bird) over another (fly/no-fly) is a bias that different human learners have. In the context of machine learning, it is called **inductive bias**: in the absense of data that narrow down the relevant concept, what type of solutions are we more likely to prefer? Two thirds of people seem to have an inductive bias in favor of bird/non-bird, and one third seem to have an inductive bias in favor of fly/no-fly.

Throughout this book you will learn about several approaches to machine learning. The decision tree model is the first such approach. These approaches differ primarily in the sort of inductive bias that
they exhibit.

Consider a variant of the decision tree learning algorithm. In this variant, we will not allow the trees to grow beyond some pre-defined maximum depth, d. That is, once we have queried on d-many features, we cannot query on any more and must just make the best guess we can at that point. This variant is called a shallow decision tree.

The key question is: What is the inductive bias of shallow decision trees? Roughly, their bias is that decisions can be made by only looking at a small number of features. For instance, a shallow decision tree would be very good at learning a function like “students only like AI courses.” It would be very bad at learning a function like “if this student has liked an odd number of their past courses, they will like the next one; otherwise they will not.” This latter is the parity function, which requires you to inspect every feature to make a prediction. The inductive bias of a decision tree is that the sorts of things we want to learn to predict are more like the first example and less like the second example.

2.3 Not Everything is Learnable

Although machine learning works well—perhaps astonishingly well—in many cases, it is important to keep in mind that it is not magical. There are many reasons why a machine learning algorithm might fail on some learning task.

There could be noise in the training data. Noise can occur both at the feature level and at the label level. Some features might correspond to measurements taken by sensors. For instance, a robot might use a laser range finder to compute its distance to a wall. However, this sensor might fail and return an incorrect value. In a sentiment classification problem, someone might have a typo in their review of a course. These would lead to noise at the feature level. There might also be noise at the label level. A student might write a scathingly negative review of a course, but then accidentally click the wrong button for the course rating.

The features available for learning might simply be insufficient. For example, in a medical context, you might wish to diagnose whether a patient has cancer or not. You may be able to collect a large amount of data about this patient, such as gene expressions, X-rays, family histories, etc. But, even knowing all of this information exactly, it might still be impossible to judge for sure whether this patient has cancer or not. As a more contrived example, you might try to classify course reviews as positive or negative. But you may have erred when downloading the data and only gotten the first five char-
acters of each review. If you had the rest of the features you might be able to do well. But with this limited feature set, there’s not much you can do.

Some examples may not have a single correct answer. You might be building a system for “safe web search,” which removes offensive web pages from search results. To build this system, you would collect a set of web pages and ask people to classify them as “offensive” or not. However, what one person considers offensive might be completely reasonable for another person. It is common to consider this as a form of label noise. Nevertheless, since you, as the designer of the learning system, have some control over this problem, it is sometimes helpful to isolate it as a source of difficulty.

Finally, learning might fail because the inductive bias of the learning algorithm is too far away from the concept that is being learned. In the bird/non-bird data, you might think that if you had gotten a few more training examples, you might have been able to tell whether this was intended to be a bird/non-bird classification or a fly/no-fly classification. However, no one I’ve talked to has ever come up with the “background is in focus” classification. Even with many more training points, this is such an unusual distinction that it may be hard for anyone to figure out it. In this case, the inductive bias of the learner is simply too misaligned with the target classification to learn.

Note that the inductive bias source of error is fundamentally different than the other three sources of error. In the inductive bias case, it is the particular learning algorithm that you are using that cannot cope with the data. Maybe if you switched to a different learning algorithm, you would be able to learn well. For instance, Neptunians might have evolved to care greatly about whether backgrounds are in focus, and for them this would be an easy classification to learn. For the other three sources of error, it is not an issue to do with the particular learning algorithm. The error is a fundamental part of the learning problem.

2.4 Underfitting and Overfitting

As with many problems, it is useful to think about the extreme cases of learning algorithms. In particular, the extreme cases of decision trees. In one extreme, the tree is “empty” and we do not ask any questions at all. We simply immediately make a prediction. In the other extreme, the tree is “full.” That is, every possible question is asked along every branch. In the full tree, there may be leaves with no associated training data. For these we must simply choose arbitrarily whether to say “yes” or “no.”
Consider the course recommendation data from Table 1. Suppose we were to build an “empty” decision tree on this data. Such a decision tree will make the same prediction regardless of its input, because it is not allowed to ask any questions about its input. Since there are more “likes” than “hates” in the training data (12 versus 8), our empty decision tree will simply always predict “likes.” The training error, \hat{e}, is $8/20 = 40\%$.

On the other hand, we could build a “full” decision tree. Since each row in this data is unique, we can guarantee that any leaf in a full decision tree will have either 0 or 1 examples assigned to it (20 of the leaves will have one example; the rest will have none). For the leaves corresponding to training points, the full decision tree will always make the correct prediction. Given this, the training error, \hat{e}, is $0/20 = 0\%$.

Of course our goal is not to build a model that gets 0% error on the training data. This would be easy! Our goal is a model that will do well on future, unseen data. How well might we expect these two models to do on future data? The “empty” tree is likely to do not much better and not much worse on future data. We might expect that it would continue to get around 40% error.

Life is more complicated for the “full” decision tree. Certainly if it is given a test example that is identical to one of the training examples, it will do the right thing (assuming no noise). But for everything else, it will only get about 50% error. This means that even if every other test point happens to be identical to one of the training points, it would only get about 25% error. In practice, this is probably optimistic, and maybe only one in every 10 examples would match a training example, yielding a 35% error.

So, in one case (empty tree) we’ve achieved about 40% error and in the other case (full tree) we’ve achieved 35% error. This is not very promising! One would hope to do better! In fact, you might notice that if you simply queried on a single feature for this data, you would be able to get very low training error, but wouldn’t be forced to “guess” randomly.

This example illustrates the key concepts of underfitting and overfitting. Underfitting is when you had the opportunity to learn something but didn’t. A student who hasn’t studied much for an upcoming exam will be underfit to the exam, and consequently will not do well. This is also what the empty tree does. Overfitting is when you pay too much attention to idiosyncracies of the training data, and aren’t able to generalize well. Often this means that your model is fitting noise, rather than whatever it is supposed to fit. A student who memorizes answers to past exam questions without understanding them has overfit the training data. Like the full tree, this student...
Consider some random event, like spins of a roulette wheel, cars driving through an intersection, the outcome of an election, or pasta being appropriately *al dente*. We often want to make a conclusion about the entire population (the pot of pasta) based on a much smaller sample (biting a couple pieces of pasta). The law of large numbers tells us that under mild conditions this is an okay thing to do.

Formally, suppose that \(v_1, v_2, \ldots, v_N \) are random variables (e.g., \(v_n \) measures if the \(n \)th spaghetti is *al dente*). Assume that these random variables are **independent** (i.e., \(v_2 \) and \(v_3 \) are uncorrelated—they weren’t both taken from the same place in the pot) and **identically distributed** (they were all drawn from the same population—pot—that we wish to measure). We can compute the sample average \(\bar{v} = \frac{1}{N} \sum_{n=1}^{N} v_n \) and under the **strong law of large numbers**, you can prove that \(\bar{v} \to \mathbb{E}[v] \) as \(N \to \infty \). Namely, the empirical sample average approaches the population average as the number of samples goes do infinity.

(Technical note: the notion of convergence here is almost sure convergence. In particular, the formal result is that \(\Pr \left(\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} v_n = \mathbb{E}[v] \right) = 1 \). Or, in words, with probability one the sample average reaches the population average.)

Also will not do well on the exam. A model that is neither overfit nor underfit is the one that is expected to do best in the future.

2.5 Separation of Training and Test Data

Suppose that, after graduating, you get a job working for a company that provides personalized recommendations for pottery. You go in and implement new algorithms based on what you learned in your machine learning class (you have learned the power of generalization!). All you need to do now is convince your boss that you have done a good job and deserve a raise!

How can you convince your boss that your fancy learning algorithms are really working?

Based on what we’ve talked about already with underfitting and overfitting, it is not enough to just tell your boss what your training error is. Noise notwithstanding, it is easy to get a training error of zero using a simple database query (or `grep`, if you prefer). Your boss will not fall for that.

The easiest approach is to **set aside** some of your available data as “test data” and use this to evaluate the performance of your learning algorithm. For instance, the pottery recommendation service that you work for might have collected 1000 examples of pottery ratings. You will select 800 of these as **training data** and set aside the final 200
as test data. You will run your learning algorithms only on the 800 training points. Only once you’re done will you apply your learned model to the 200 test points, and report your test error on those 200 points to your boss.

The hope in this process is that however well you do on the 200 test points will be indicative of how well you are likely to do in the future. This is analogous to estimating support for a presidential candidate by asking a small (random!) sample of people for their opinions. Statistics (specifically, concentration bounds of which the “Central limit theorem” is a famous example) tells us that if the sample is large enough, it will be a good representative. The 80/20 split is not magic: it’s simply fairly well established. Occasionally people use a 90/10 split instead, especially if they have a lot of data.

The cardinal rule of machine learning is: never touch your test data. Ever. If that’s not clear enough:

Never ever touch your test data!

If there is only one thing you learn from this book, let it be that. Do not look at your test data. Even once. Even a tiny peek. Once you do that, it is not test data any more. Yes, perhaps your algorithm hasn’t seen it. But you have. And you are likely a better learner than your learning algorithm.Consciously or otherwise, you might make decisions based on whatever you might have seen. Once you look at the test data, your model’s performance on it is no longer indicative of it’s performance on future unseen data. This is simply because future data is unseen, but your “test” data no longer is.

2.6 Models, Parameters and Hyperparameters

The general approach to machine learning, which captures many existing learning algorithms, is the modeling approach. The idea is that we come up with some formal model of our data. For instance, we might model the classification decision of a student/course pair as a decision tree. The choice of using a tree to represent this model is our choice. We also could have used an arithmetic circuit or a polynomial or some other function. The model tells us what sort of things we can learn, and also tells us what our inductive bias is.

For most models, there will be associated parameters. These are the things that we use the data to decide on. Parameters in a decision tree include: the specific questions we asked, the order in which we asked them, and the classification decisions at the leaves. The job of our decision tree learning algorithm DECISIONTREETRAIN is to take data and figure out a good set of parameters.
Many learning algorithms will have additional knobs that you can adjust. In most cases, these knobs amount to tuning the inductive bias of the algorithm. In the case of the decision tree, an obvious knob that one can tune is the \textbf{maximum depth} of the decision tree.

That is, we could modify the \texttt{DecisionTreeTrain} function so that it stops recursing once it reaches some pre-defined maximum depth. By playing with this depth knob, we can adjust between underfitting (the empty tree, depth = 0) and overfitting (the full tree, depth = \infty).

Such a knob is called a \textbf{hyperparameter}. It is so called because it is a parameter that controls other parameters of the model. The exact definition of hyperparameter is hard to pin down: it’s one of those things that are easier to identify than define. However, one of the key identifiers for hyperparameters (and the main reason that they cause consternation) is that they cannot be naively adjusted using the training data.

In \texttt{DecisionTreeTrain}, as in most machine learning, the learning algorithm is essentially trying to adjust the parameters of the model so as to minimize training error. This suggests an idea for choosing hyperparameters: choose them so that they minimize training error.

What is wrong with this suggestion? Suppose that you were to treat “maximum depth” as a hyperparameter and tried to tune it on your training data. To do this, maybe you simply build a collection of decision trees, \texttt{tree}_0, \texttt{tree}_1, \texttt{tree}_2, \ldots, \texttt{tree}_{100}, where \texttt{tree}_d is a tree of maximum depth \texttt{d}. We then computed the training error of each of these trees and chose the “ideal” maximum depth as that which minimizes training error? Which one would it pick?

The answer is that it would pick \texttt{d} = 100. Or, in general, it would pick \texttt{d} as large as possible. Why? Because choosing a bigger \texttt{d} will \textit{never hurt} on the training data. By making \texttt{d} larger, you are simply encouraging overfitting. But by evaluating on the training data, overfitting actually looks like a good idea!

An alternative idea would be to tune the maximum depth on test data. This is promising because test data performance is what we really want to optimize, so tuning this knob on the test data seems like a good idea. That is, it won’t accidentally reward overfitting. Of course, it breaks our cardinal rule about test data: that you should never touch your test data. So that idea is immediately off the table.

However, our “test data” wasn’t magic. We simply took our 1000 examples, called 800 of them “training” data and called the other 200 “test” data. So instead, let’s do the following. Let’s take our original 1000 data points, and select 700 of them as training data. From the remainder, take 100 as \textbf{development data} and the remaining 200 as test data. The job of the development data is to allow us to tune

\footnote{Some people call this “validation data” or “held-out data.”}
hyperparameters. The general approach is as follows:

1. Split your data into 70% training data, 10% development data and 20% test data.

2. For each possible setting of your hyperparameters:
 (a) Train a model using that setting of hyperparameters on the training data.
 (b) Compute this model’s error rate on the development data.

3. From the above collection of models, choose the one that achieved the lowest error rate on development data.

4. Evaluate that model on the test data to estimate future test performance.

2.7 Real World Applications of Machine Learning

Figure 2.4 shows a typical sequence of decisions that must be made to deploy a machine learning approach in the real world. In the left column, you can see the generic decision being made. In the right column, an example of this decision for the particular case of advertising placement on a search engine we’ve built.

In this sequence, (1) we have some real world goal like increasing revenue for our search engine, and decide to try to increase revenue by (2) displaying better ads. We convert this task into a machine learning problem by (3) deciding to train a classifier to predict whether a user will click on an ad or not. In order to apply machine learning, we must collect some training data; in this case, (4) we collect data by logging user interactions with the current system. We must choose what to log; (5) we choose to log the ad being displayed, the query the user entered into our search engine, and binary value showing if they clicked or not.

In order to make these logs consumable by a machine learning algorithm, (6) we convert the data into input/output pairs: in this case, pairs of words from a bag-of-words representing the query and a bag-of-words representing the ad as input, and the click as a ± label. We then (7) select a model family (e.g., depth 20 decision trees), and thereby an inductive bias, for instance depth ≤ 20 decision trees.

We’re now ready to (8) select a specific subset of data to use as training data: in this case, data from April 2016. We split this into training and development and (9) learn a final decision tree, tuning the maximum depth on the development data. We can then use this decision tree to (10) make predictions on some held-out test data, in order to make these logs consumable by a machine learning algorithm, (6) we convert the data into input/output pairs: in this case, pairs of words from a bag-of-words representing the query and a bag-of-words representing the ad as input, and the click as a ± label. We then (7) select a model family (e.g., depth 20 decision trees), and thereby an inductive bias, for instance depth ≤ 20 decision trees.

We’re now ready to (8) select a specific subset of data to use as training data: in this case, data from April 2016. We split this into training and development and (9) learn a final decision tree, tuning the maximum depth on the development data. We can then use this decision tree to (10) make predictions on some held-out test data, in order to evaluate error (11) zero/one loss for ± click, and thereby (12) deploy! (hope we achieve our goal)

Figure 2.4: A typical design process for a machine learning application.
this case from the following month. We can (11) measure the overall quality of our predictor as zero/one loss (classification error) on this test data and finally (12) deploy our system.

The important thing about this sequence of steps is that in any one, things can go wrong. That is, between any two rows of this table, we are necessarily accumulating some additional error against our original real world goal of increasing revenue. For example, in step 5, we decided on a representation that left out many possible variables we could have logged, like time of day or season of year. By leaving out those variables, we set an explicit upper bound on how well our learned system can do.

It is often an effective strategy to run an oracle experiment. In an oracle experiment, we assume that everything below some line can be solved perfectly, and measure how much impact that will have on a higher line. As an extreme example, before embarking on a machine learning approach to the ad display problem, we should measure something like: if our classifier were perfect, how much more money would we make? If the number is not very high, perhaps there is some better for our time.

Finally, although this sequence is denoted linearly, the entire process is highly interactive in practice. A large part of “debugging” machine learning (covered more extensively in Chapter 5) involves trying to figure out where in this sequence the biggest losses are and fixing that step. In general, it is often useful to build the stupidest thing that could possibly work, then look at how well it’s doing, and decide if and where to fix it.

2.8 Further Reading

TODO further reading