
1 | DECISION TREES

Dependencies: None.

At a basic level, machine learning is about predicting the future
based on the past. For instance, you might wish to predict how much
a user Alice will like a movie that she hasn’t seen, based on her rat-
ings of movies that she has seen. This prediction could be based on
many factors of the movies: their category (drama, documentary,
etc.), the language, the director and actors, the production company,
etc. In general, this means making informed guesses about some un-
observed property of some object, based on observed properties of
that object.

The first question we’ll ask is: what does it mean to learn? In
order to develop learning machines, we must know what learning
actually means, and how to determine success (or failure). You’ll see
this question answered in a very limited learning setting, which will
be progressively loosened and adapted throughout the rest of this
book. For concreteness, our focus will be on a very simple model of
learning called a decision tree.

1.1 What Does it Mean to Learn?

Alice has just begun taking a course on machine learning. She knows
that at the end of the course, she will be expected to have “learned”
all about this topic. A common way of gauging whether or not she
has learned is for her teacher, Bob, to give her a exam. She has done
well at learning if she does well on the exam.

But what makes a reasonable exam? If Bob spends the entire
semester talking about machine learning, and then gives Alice an
exam on History of Pottery, then Alice’s performance on this exam
will not be representative of her learning. On the other hand, if the
exam only asks questions that Bob has answered exactly during lec-
tures, then this is also a bad test of Alice’s learning, especially if it’s
an “open notes” exam. What is desired is that Alice observes specific
examples from the course, and then has to answer new, but related
questions on the exam. This tests whether Alice has the ability to

Learning Objectives:
• Explain the difference between

memorization and generalization.

• Implement a decision tree classifier.

• Take a concrete task and cast it as a
learning problem, with a formal no-
tion of input space, features, output
space, generating distribution and
loss function.

The words printed here are concepts.
You must go through the experiences. – Carl Frederick

decision trees 9

generalize. Generalization is perhaps the most central concept in
machine learning.

As a concrete example, consider a course recommendation system
for undergraduate computer science students. We have a collection
of students and a collection of courses. Each student has taken, and
evaluated, a subset of the courses. The evaluation is simply a score
from −2 (terrible) to +2 (awesome). The job of the recommender
system is to predict how much a particular student (say, Alice) will
like a particular course (say, Algorithms).

Given historical data from course ratings (i.e., the past) we are
trying to predict unseen ratings (i.e., the future). Now, we could
be unfair to this system as well. We could ask it whether Alice is
likely to enjoy the History of Pottery course. This is unfair because
the system has no idea what History of Pottery even is, and has no
prior experience with this course. On the other hand, we could ask
it how much Alice will like Artificial Intelligence, which she took
last year and rated as +2 (awesome). We would expect the system to
predict that she would really like it, but this isn’t demonstrating that
the system has learned: it’s simply recalling its past experience. In
the former case, we’re expecting the system to generalize beyond its
experience, which is unfair. In the latter case, we’re not expecting it
to generalize at all.

This general set up of predicting the future based on the past is
at the core of most machine learning. The objects that our algorithm
will make predictions about are examples. In the recommender sys-
tem setting, an example would be some particular Student/Course
pair (such as Alice/Algorithms). The desired prediction would be the
rating that Alice would give to Algorithms.

kn
ow

n
la

be
ls

training
data

learning
algorithm

f? test
example

predicted
label

Figure 1.1: The general supervised ap-
proach to machine learning: a learning
algorithm reads in training data and
computes a learned function f . This
function can then automatically label
future text examples.

To make this concrete, Figure 1.1 shows the general framework of
induction. We are given training data on which our algorithm is ex-
pected to learn. This training data is the examples that Alice observes
in her machine learning course, or the historical ratings data for
the recommender system. Based on this training data, our learning
algorithm induces a function f that will map a new example to a cor-
responding prediction. For example, our function might guess that
f (Alice/Machine Learning) might be high because our training data
said that Alice liked Artificial Intelligence. We want our algorithm
to be able to make lots of predictions, so we refer to the collection
of examples on which we will evaluate our algorithm as the test set.
The test set is a closely guarded secret: it is the final exam on which
our learning algorithm is being tested. If our algorithm gets to peek
at it ahead of time, it’s going to cheat and do better than it should. Why is it bad if the learning algo-

rithm gets to peek at the test data??The goal of inductive machine learning is to take some training
data and use it to induce a function f . This function f will be evalu-

10 a course in machine learning

ated on the test data. The machine learning algorithm has succeeded
if its performance on the test data is high.

1.2 Some Canonical Learning Problems

There are a large number of typical inductive learning problems.
The primary difference between them is in what type of thing they’re
trying to predict. Here are some examples:

Regression: trying to predict a real value. For instance, predict the
value of a stock tomorrow given its past performance. Or predict
Alice’s score on the machine learning final exam based on her
homework scores.

Binary Classification: trying to predict a simple yes/no response.
For instance, predict whether Alice will enjoy a course or not.
Or predict whether a user review of the newest Apple product is
positive or negative about the product.

Multiclass Classification: trying to put an example into one of a num-
ber of classes. For instance, predict whether a news story is about
entertainment, sports, politics, religion, etc. Or predict whether a
CS course is Systems, Theory, AI or Other.

Ranking: trying to put a set of objects in order of relevance. For in-
stance, predicting what order to put web pages in, in response to a
user query. Or predict Alice’s ranked preferences over courses she
hasn’t taken.

For each of these types of canon-
ical machine learning problems,
come up with one or two concrete
examples.

?The reason that it is convenient to break machine learning prob-
lems down by the type of object that they’re trying to predict has to
do with measuring error. Recall that our goal is to build a system
that can make “good predictions.” This begs the question: what does
it mean for a prediction to be “good?” The different types of learning
problems differ in how they define goodness. For instance, in regres-
sion, predicting a stock price that is off by $0.05 is perhaps much
better than being off by $200.00. The same does not hold of multi-
class classification. There, accidentally predicting “entertainment”
instead of “sports” is no better or worse than predicting “politics.”

1.3 The Decision Tree Model of Learning

The decision tree is a classic and natural model of learning. It is
closely related to the fundamental computer science notion of “di-
vide and conquer.” Although decision trees can be applied to many

decision trees 11

learning problems, we will begin with the simplest case: binary clas-
sification.

Suppose that your goal is to predict whether some unknown user
will enjoy some unknown course. You must simply answer “yes” or
“no.” In order to make a guess, you’re allowed to ask binary ques-
tions about the user/course under consideration. For example:

You: Is the course under consideration in Systems?
Me: Yes
You: Has this student taken any other Systems courses?
Me: Yes
You: Has this student liked most previous Systems courses?
Me: No
You: I predict this student will not like this course.
The goal in learning is to figure out what questions to ask, in what

order to ask them, and what answer to predict once you have asked
enough questions.

isSystems?

takenOtherSys?

morning? likedOtherSys?

like nah nah like

like

no

no

no no

yes

yes

yesyes

Figure 1.2: A decision tree for a course
recommender system, from which the
in-text “dialog” is drawn.

The decision tree is so-called because we can write our set of ques-
tions and guesses in a tree format, such as that in Figure 1.2. In this
figure, the questions are written in the internal tree nodes (rectangles)
and the guesses are written in the leaves (ovals). Each non-terminal
node has two children: the left child specifies what to do if the an-
swer to the question is “no” and the right child specifies what to do if
it is “yes.”

In order to learn, I will give you training data. This data consists
of a set of user/course examples, paired with the correct answer for
these examples (did the given user enjoy the given course?). From
this, you must construct your questions. For concreteness, there is a
small data set in Table 1 in the Appendix of this book. This training
data consists of 20 course rating examples, with course ratings and
answers to questions that you might ask about this pair. We will
interpret ratings of 0, +1 and +2 as “liked” and ratings of −2 and −1
as “hated.”

In what follows, we will refer to the questions that you can ask as
features and the responses to these questions as feature values. The
rating is called the label. An example is just a set of feature values.
And our training data is a set of examples, paired with labels.

There are a lot of logically possible trees that you could build,
even over just this small number of features (the number is in the
millions). It is computationally infeasible to consider all of these to
try to choose the “best” one. Instead, we will build our decision tree
greedily. We will begin by asking:

If I could only ask one question, what question would I ask?

overall:

easy:

AI:

systems:

theory:

60%
40%

like
nah

60%
40%

60%
40%

ye
s

no

82%
18%

33%
67%

ye
s

no

20%
80%

100%
0%

ye
s

no

80%
20%

40%
60%

ye
s

no

Figure 1.3: A histogram of labels for (a)
the entire data set; (b-e) the examples
in the data set for each value of the first
four features.

You want to find a feature that is most useful in helping you guess
whether this student will enjoy this course. A useful way to think

12 a course in machine learning

about this is to look at the histogram of labels for each feature. 1 1 A colleague related the story of
getting his 8-year old nephew to
guess a number between 1 and 100.
His nephew’s first four questions
were: Is it bigger than 20? (YES) Is
it even? (YES) Does it have a 7 in it?
(NO) Is it 80? (NO). It took 20 more
questions to get it, even though 10

should have been sufficient. At 8,
the nephew hadn’t quite figured out
how to divide and conquer. http:
//blog.computationalcomplexity.
org/2007/04/
getting-8-year-old-interested-in.
html.

This is shown for the first four features in Figure 1.3. Each histogram
shows the frequency of “like”/“hate” labels for each possible value
of an associated feature. From this figure, you can see that asking
the first feature is not useful: if the value is “no” then it’s hard to
guess the label; similarly if the answer is “yes.” On the other hand,
asking the second feature is useful: if the value is “no,” you can be
pretty confident that this student will hate this course; if the answer
is “yes,” you can be pretty confident that this student will like this
course.

More formally, you will consider each feature in turn. You might
consider the feature “Is this a System’s course?” This feature has two
possible value: no and yes. Some of the training examples have an
answer of “no” – let’s call that the “NO” set. Some of the training
examples have an answer of “yes” – let’s call that the “YES” set. For
each set (NO and YES) we will build a histogram over the labels.
This is the second histogram in Figure 1.3. Now, suppose you were
to ask this question on a random example and observe a value of
“no.” Further suppose that you must immediately guess the label for
this example. You will guess “like,” because that’s the more preva-
lent label in the NO set (actually, it’s the only label in the NO set).
Alternatively, if you receive an answer of “yes,” you will guess “hate”
because that is more prevalent in the YES set.

So, for this single feature, you know what you would guess if you
had to. Now you can ask yourself: if I made that guess on the train-
ing data, how well would I have done? In particular, how many ex-
amples would I classify correctly? In the NO set (where you guessed
“like”) you would classify all 10 of them correctly. In the YES set
(where you guessed “hate”) you would classify 8 (out of 10) of them
correctly. So overall you would classify 18 (out of 20) correctly. Thus,
we’ll say that the score of the “Is this a System’s course?” question is
18/20. How many training examples

would you classify correctly for
each of the other three features
from Figure 1.3?

?You will then repeat this computation for each of the available
features to us, compute the scores for each of them. When you must
choose which feature consider first, you will want to choose the one
with the highest score.

But this only lets you choose the first feature to ask about. This
is the feature that goes at the root of the decision tree. How do we
choose subsequent features? This is where the notion of divide and
conquer comes in. You’ve already decided on your first feature: “Is
this a Systems course?” You can now partition the data into two parts:
the NO part and the YES part. The NO part is the subset of the data
on which value for this feature is “no”; the YES half is the rest. This
is the divide step.

http://blog.computationalcomplexity.org/2007/04/getting-8-year-old-interested-in.html
http://blog.computationalcomplexity.org/2007/04/getting-8-year-old-interested-in.html
http://blog.computationalcomplexity.org/2007/04/getting-8-year-old-interested-in.html
http://blog.computationalcomplexity.org/2007/04/getting-8-year-old-interested-in.html
http://blog.computationalcomplexity.org/2007/04/getting-8-year-old-interested-in.html

decision trees 13

Algorithm 1 DecisionTreeTrain(data, remaining features)
1: guess← most frequent answer in data // default answer for this data
2: if the labels in data are unambiguous then
3: return Leaf(guess) // base case: no need to split further
4: else if remaining features is empty then
5: return Leaf(guess) // base case: cannot split further
6: else // we need to query more features
7: for all f ∈ remaining features do
8: NO← the subset of data on which f =no
9: YES← the subset of data on which f =yes

10: score[f]← # of majority vote answers in NO
11: + # of majority vote answers in YES

// the accuracy we would get if we only queried on f
12: end for
13: f ← the feature with maximal score(f)
14: NO← the subset of data on which f =no
15: YES← the subset of data on which f =yes
16: left← DecisionTreeTrain(NO, remaining features \ {f})
17: right← DecisionTreeTrain(YES, remaining features \ {f})
18: return Node(f , left, right)
19: end if

Algorithm 2 DecisionTreeTest(tree, test point)
1: if tree is of the form Leaf(guess) then
2: return guess
3: else if tree is of the form Node(f , left, right) then
4: if f = no in test point then
5: return DecisionTreeTest(left, test point)
6: else
7: return DecisionTreeTest(right, test point)
8: end if
9: end if

The conquer step is to recurse, and run the same routine (choosing
the feature with the highest score) on the NO set (to get the left half
of the tree) and then separately on the YES set (to get the right half of
the tree).

At some point it will become useless to query on additional fea-
tures. For instance, once you know that this is a Systems course,
you know that everyone will hate it. So you can immediately predict
“hate” without asking any additional questions. Similarly, at some
point you might have already queried every available feature and still
not whittled down to a single answer. In both cases, you will need to
create a leaf node and guess the most prevalent answer in the current
piece of the training data that you are looking at.

Putting this all together, we arrive at the algorithm shown in Al-
gorithm 1.3.2 This function, DecisionTreeTrain takes two argu- 2 There are more nuanced algorithms

for building decision trees, some of
which are discussed in later chapters of
this book. They primarily differ in how
they compute the score function.

14 a course in machine learning

ments: our data, and the set of as-yet unused features. It has two
base cases: either the data is unambiguous, or there are no remaining
features. In either case, it returns a Leaf node containing the most
likely guess at this point. Otherwise, it loops over all remaining fea-
tures to find the one with the highest score. It then partitions the data
into a NO/YES split based on the best feature. It constructs its left
and right subtrees by recursing on itself. In each recursive call, it uses
one of the partitions of the data, and removes the just-selected feature
from consideration. Is Algorithm 1.3 guaranteed to

terminate??The corresponding prediction algorithm is shown in Algorithm 1.3.
This function recurses down the decision tree, following the edges
specified by the feature values in some test point. When it reaches a
leaf, it returns the guess associated with that leaf.

1.4 Formalizing the Learning Problem

As you’ve seen, there are several issues that we must take into ac-
count when formalizing the notion of learning.

• The performance of the learning algorithm should be measured on
unseen “test” data.

• The way in which we measure performance should depend on the
problem we are trying to solve.

• There should be a strong relationship between the data that our
algorithm sees at training time and the data it sees at test time.

In order to accomplish this, let’s assume that someone gives us a
loss function, `(·, ·), of two arguments. The job of ` is to tell us how
“bad” a system’s prediction is in comparison to the truth. In particu-
lar, if y is the truth and ŷ is the system’s prediction, then `(y, ŷ) is a
measure of error.

For three of the canonical tasks discussed above, we might use the
following loss functions:

Regression: squared loss `(y, ŷ) = (y− ŷ)2

or absolute loss `(y, ŷ) = |y− ŷ|.

Binary Classification: zero/one loss `(y, ŷ) =

{
0 if y = ŷ
1 otherwise

This notation means that the loss is zero
if the prediction is correct and is one
otherwise.

Multiclass Classification: also zero/one loss.
Why might it be a bad idea to use
zero/one loss to measure perfor-
mance for a regression problem?

?Note that the loss function is something that you must decide on
based on the goals of learning.

Now that we have defined our loss function, we need to consider
where the data (training and test) comes from. The model that we

decision trees 15

We write E(x,y)∼D [`(y, f (x))] for the expected loss. Expectation means “average.” This is saying “if you
drew a bunch of (x, y) pairs independently at random from D, what would your average loss be?More
formally, if D is a discrete probability distribution, then this expectation can be expanded as:

E(x,y)∼D [`(y, f (x))] = ∑
(x,y)∈D

[D(x, y)`(y, f (x))] (1.1)

This is exactly the weighted average loss over the all (x, y) pairs in D, weighted by their probability,
D(x, y). If D is a finite discrete distribution, for instance defined by a finite data set {(x1, y1), . . . , (xN , yN)

that puts equal weight on each example (probability 1/N), then we get:

E(x,y)∼D[`(y, f (x))] = ∑
(x,y)∈D

[D(x, y)`(y, f (x))] definition of expectation (1.2)

=
N

∑
n=1

[D(xn, yn)`(yn, f (xn))] D is discrete and finite (1.3)

=
N

∑
n=1

[
1
N
`(yn, f (xn))] definition of D (1.4)

=
1
N

N

∑
n=1

[`(yn, f (xn))] rearranging terms (1.5)

Which is exactly the average loss on that dataset.

The most important thing to remember is that there are two equivalent ways to think about expections:
(1) The expectation of some function g is the weighted average value of g, where the weights are given by
the underlying probability distribution. (2) The expectation of some function g is your best guess of the
value of g if you were to draw a single item from the underlying probability distribution.

MATH REVIEW | EXPECTATED VALUES

Figure 1.4:

will use is the probabilistic model of learning. Namely, there is a prob-
ability distribution D over input/output pairs. This is often called
the data generating distribution. If we write x for the input (the
user/course pair) and y for the output (the rating), then D is a distri-
bution over (x, y) pairs.

A useful way to think about D is that it gives high probability to
reasonable (x, y) pairs, and low probability to unreasonable (x, y)
pairs. A (x, y) pair can be unreasonable in two ways. First, x might
be an unusual input. For example, a x related to an “Intro to Java”
course might be highly probable; a x related to a “Geometric and
Solid Modeling” course might be less probable. Second, y might
be an unusual rating for the paired x. For instance, if Alice were to
take AI 100 times (without remembering that she took it before!),
she would give the course a +2 almost every time. Perhaps some

16 a course in machine learning

semesters she might give a slightly lower score, but it would be un-
likely to see x =Alice/AI paired with y = −2.

It is important to remember that we are not making any assump-
tions about what the distribution D looks like. (For instance, we’re
not assuming it looks like a Gaussian or some other, common distri-
bution.) We are also not assuming that we know what D is. In fact,
if you know a priori what your data generating distribution is, your
learning problem becomes significantly easier. Perhaps the hardest
thing about machine learning is that we don’t know what D is: all we
get is a random sample from it. This random sample is our training
data.

Our learning problem, then, is defined by two quantities: Consider the following prediction
task. Given a paragraph written
about a course, we have to predict
whether the paragraph is a positive
or negative review of the course.
(This is the sentiment analysis prob-
lem.) What is a reasonable loss
function? How would you define
the data generating distribution?

?

1. The loss function `, which captures our notion of what is important
to learn.

2. The data generating distribution D, which defines what sort of
data we expect to see.

We are given access to training data, which is a random sample of
input/output pairs drawn from D. Based on this training data, we
need to induce a function f that maps new inputs x̂ to corresponding
prediction ŷ. The key property that f should obey is that it should do
well (as measured by `) on future examples that are also drawn from
D. Formally, it’s expected loss ε over D with repsect to ` should be
as small as possible:

ε , E(x,y)∼D
[
`(y, f (x))

]
= ∑

(x,y)
D(x, y)`(y, f (x)) (1.6)

The difficulty in minimizing our expected loss from Eq (1.6) is
that we don’t know what D is! All we have access to is some training
data sampled from it! Suppose that we denote our training data
set by D. The training data consists of N-many input/output pairs,
(x1, y1), (x2, y2), . . . , (xN , yN). Given a learned function f , we can
compute our training error, ε̂:

ε̂ ,
1
N

N

∑
n=1

`(yn, f (xn)) (1.7)

That is, our training error is simply our average error over the train-
ing data. Verify by calculation that we

can write our training error as
E(x,y)∼D

[
`(y, f (x))

]
, by thinking

of D as a distribution that places
probability 1/N to each example in
D and probability 0 on everything
else.

?

Of course, we can drive ε̂ to zero by simply memorizing our train-
ing data. But as Alice might find in memorizing past exams, this
might not generalize well to a new exam!

This is the fundamental difficulty in machine learning: the thing
we have access to is our training error, ε̂. But the thing we care about

decision trees 17

minimizing is our expected error ε. In order to get the expected error
down, our learned function needs to generalize beyond the training
data to some future data that it might not have seen yet!

So, putting it all together, we get a formal definition of induction
machine learning: Given (i) a loss function ` and (ii) a sample D
from some unknown distribution D, you must compute a function
f that has low expected error ε over D with respect to `.

A very important comment is that we should never expect a ma-
chine learning algorithm to generalize beyond the data distribution
it has seen at training time. In a famous—if posssibly apocryphal—
example from the 1970s, the US Government wanted to train a clas-
sifier to distinguish between US tanks and Russian tanks. They col-
lected a training and test set, and managed to build a classifier with
nearly 100% accuracy on that data. But when this classifier was run
in the “real world”, it failed miserably. It had not, in fact, learned
to distinguish between US tanks and Russian tanks, but rather just
between clear photos and blurry photos. In this case, there was a bias
in the training data (due to how the training data was collected) that
caused the learning algorithm to learn something other than what we
were hoping for. We will return to this issue in Chapter 6; for now,
simply remember that the distribution D for training data must match
the distribution D for the test data.

1.5 Chapter Summary and Outlook

At this point, you should be able to use decision trees to do machine
learning. Someone will give you data. You’ll split it into training,
development and test portions. Using the training and development
data, you’ll find a good value for maximum depth that trades off
between underfitting and overfitting. You’ll then run the resulting
decision tree model on the test data to get an estimate of how well
you are likely to do in the future.

You might think: why should I read the rest of this book? Aside
from the fact that machine learning is just an awesome fun field to
learn about, there’s a lot left to cover. In the next two chapters, you’ll
learn about two models that have very different inductive biases than
decision trees. You’ll also get to see a very useful way of thinking
about learning: the geometric view of data. This will guide much of
what follows. After that, you’ll learn how to solve problems more
complicated that simple binary classification. (Machine learning
people like binary classification a lot because it’s one of the simplest
non-trivial problems that we can work on.) After that, things will
diverge: you’ll learn about ways to think about learning as a formal
optimization problem, ways to speed up learning, ways to learn

18 a course in machine learning

without labeled data (or with very little labeled data) and all sorts of
other fun topics.

But throughout, we will focus on the view of machine learning
that you’ve seen here. You select a model (and its associated induc-
tive biases). You use data to find parameters of that model that work
well on the training data. You use development data to avoid under-
fitting and overfitting. And you use test data (which you’ll never look
at or touch, right?) to estimate future model performance. Then you
conquer the world.

1.6 Further Reading

In our discussion of decision trees, we used misclassification rate for
selecting features. While simple and intuitive, misclassification rate
has problems. There has been a significant amount of work that
considers more advanced splitting criteria; the most popular is ID3,
based on the mutual information quantity from information the-
ory. We have also only considered a very simple mechanism for
controlling inductive bias: limiting the depth of the decision tree.
Again, there are more advanced “tree pruning” techniques that typ-
ically operate by growing deep trees and then pruning back some
of the branches. These approaches have the advantage that differ-
ent branches can have different depths, accounting for the fact that
the amount of data that gets passed down each branch might differ
dramatically3. 3 Quinlan 1986

	Decision Trees
	What Does it Mean to Learn?
	Some Canonical Learning Problems
	The Decision Tree Model of Learning
	Formalizing the Learning Problem
	Chapter Summary and Outlook
	Further Reading

