
A Course in
Machine Learning

Hal Daumé III

2 | GEOMETRY AND NEAREST NEIGHBORS

Dependencies: Chapter 1

You can think of prediction tasks as mapping inputs (course
reviews) to outputs (course ratings). As you learned in the previ-
ous chapter, decomposing an input into a collection of features (e.g.,
words that occur in the review) forms a useful abstraction for learn-
ing. Therefore, inputs are nothing more than lists of feature values.
This suggests a geometric view of data, where we have one dimen-
sion for every feature. In this view, examples are points in a high-
dimensional space.

Once we think of a data set as a collection of points in high dimen-
sional space, we can start performing geometric operations on this
data. For instance, suppose you need to predict whether Alice will
like Algorithms. Perhaps we can try to find another student who is
most “similar” to Alice, in terms of favorite courses. Say this student
is Jeremy. If Jeremy liked Algorithms, then we might guess that Alice
will as well. This is an example of a nearest neighbor model of learn-
ing. By inspecting this model, we’ll see a completely different set of
answers to the key learning questions we discovered in Chapter 1.

2.1 From Data to Feature Vectors

An example is just a collection of feature values about that example,
for instance the data in Table ?? from the Appendix. To a person,
these features have meaning. One feature might count how many
times the reviewer wrote “excellent” in a course review. Another
might count the number of exclamation points. A third might tell us
if any text is underlined in the review.

To a machine, the features themselves have no meaning. Only
the feature values, and how they vary across examples, mean some-
thing to the machine. From this perspective, you can think about an
example as being represented by a feature vector consisting of one
“dimension” for each feature, where each dimenion is simply some
real value.

Consider a review that said “excellent” three times, had one excla-

Learning Objectives:
• Describe a data set as points in a

high dimensional space.

• Explain the curse of dimensionality.

• Compute distances between points
in high dimensional space.

• Implement a K-nearest neighbor
model of learning.

• Draw decision boundaries.

• Implement the K-means algorithm
for clustering.

Our brains have evolved to get us out of the rain, find where the
berries are, and keep us from getting killed. Our brains did not
evolve to help us grasp really large numbers or to look at things in
a hundred thousand dimensions. – Ronald Graham

geometry and nearest neighbors 27

mation point and no underlined text. This could be represented by
the feature vector 〈3, 1, 0〉. An almost identical review that happened
to have underlined text would have the feature vector 〈3, 1, 1〉.

Note, here, that we have imposed the convention that for binary
features (yes/no features), the corresponding feature values are 0
and 1, respectively. This was an arbitrary choice. We could have
made them 0.92 and −16.1 if we wanted. But 0/1 is convenient and
helps us interpret the feature values. When we discuss practical
issues in Chapter 4, you will see other reasons why 0/1 is a good
choice.

Figure 2.1: A figure showing projections
of data in two dimension in three
ways – see text. Top: horizontal axis
corresponds to the first feature (TODO)
and the vertical axis corresponds to
the second feature (TODO); Middle:
horizonal is second feature and vertical
is third; Bottom: horizonal is first and
vertical is third.

Figure 2.1 shows the data from Table ?? in three views. These
three views are constructed by considering two features at a time in
different pairs. In all cases, the plusses denote positive examples and
the minuses denote negative examples. In some cases, the points fall
on top of each other, which is why you cannot see 20 unique points
in all figures.

Match the example ids from Ta-
ble ?? with the points in Figure 2.1.?

The mapping from feature values to vectors is straighforward in
the case of real valued features (trivial) and binary features (mapped
to zero or one). It is less clear what to do with categorical features.
For example, if our goal is to identify whether an object in an image
is a tomato, blueberry, cucumber or cockroach, we might want to
know its color: is it Red, Blue, Green or Black?

One option would be to map Red to a value of 0, Blue to a value
of 1, Green to a value of 2 and Black to a value of 3. The problem
with this mapping is that it turns an unordered set (the set of colors)
into an ordered set (the set {0, 1, 2, 3}). In itself, this is not necessarily
a bad thing. But when we go to use these features, we will measure
examples based on their distances to each other. By doing this map-
ping, we are essentially saying that Red and Blue are more similar
(distance of 1) than Red and Black (distance of 3). This is probably
not what we want to say!

A solution is to turn a categorical feature that can take four dif-
ferent values (say: Red, Blue, Green and Black) into four binary
features (say: IsItRed?, IsItBlue?, IsItGreen? and IsItBlack?). In gen-
eral, if we start from a categorical feature that takes V values, we can
map it to V-many binary indicator features. The computer scientist in you might

be saying: actually we could map it
to log2 V-many binary features! Is
this a good idea or not?

?With that, you should be able to take a data set and map each
example to a feature vector through the following mapping:

• Real-valued features get copied directly.

• Binary features become 0 (for false) or 1 (for true).

• Categorical features with V possible values get mapped to V-many
binary indicator features.

28 a course in machine learning

After this mapping, you can think of a single example as a vec-
tor in a high-dimensional feature space. If you have D-many fea-
tures (after expanding categorical features), then this feature vector
will have D-many components. We will denote feature vectors as
x = 〈x1, x2, . . . , xD〉, so that xd denotes the value of the dth fea-
ture of x. Since these are vectors with real-valued components in
D-dimensions, we say that they belong to the space RD.

For D = 2, our feature vectors are just points in the plane, like in
Figure 2.1. For D = 3 this is three dimensional space. For D > 3 it
becomes quite hard to visualize. (You should resist the temptation
to think of D = 4 as “time” – this will just make things confusing.)
Unfortunately, for the sorts of problems you will encounter in ma-
chine learning, D ≈ 20 is considered “low dimensional,” D ≈ 1000 is
“medium dimensional” and D ≈ 100000 is “high dimensional.” Can you think of problems (per-

haps ones already mentioned in this
book!) that are low dimensional?
That are medium dimensional?
That are high dimensional?

?
2.2 K-Nearest Neighbors

The biggest advantage to thinking of examples as vectors in a high
dimensional space is that it allows us to apply geometric concepts
to machine learning. For instance, one of the most basic things
that one can do in a vector space is compute distances. In two-
dimensional space, the distance between 〈2, 3〉 and 〈6, 1〉 is given
by
√
(2− 6)2 + (3− 1)2 =

√
18 ≈ 4.24. In general, in D-dimensional

space, the Euclidean distance between vectors a and b is given by
Eq (2.1) (see Figure 2.2 for geometric intuition in three dimensions):

d(a, b) =

[
D

∑
d=1

(ad − bd)
2

] 1
2

(2.1)

Figure 2.2: A figure showing Euclidean
distance in three dimensions

Verify that d from Eq (2.1) gives the
same result (4.24) for the previous
computation.

?

Figure 2.3: knn:classifyit: A figure
showing an easy NN classification
problem where the test point is a ? and
should be positive.

Now that you have access to distances between examples, you
can start thinking about what it means to learn again. Consider Fig-
ure 2.3. We have a collection of training data consisting of positive
examples and negative examples. There is a test point marked by a
question mark. Your job is to guess the correct label for that point.

Most likely, you decided that the label of this test point is positive.
One reason why you might have thought that is that you believe
that the label for an example should be similar to the label of nearby
points. This is an example of a new form of inductive bias.

The nearest neighbor classifier is build upon this insight. In com-
parison to decision trees, the algorithm is ridiculously simple. At
training time, we simply store the entire training set. At test time,
we get a test example x̂. To predict its label, we find the training ex-
ample x that is most similar to x̂. In particular, we find the training

geometry and nearest neighbors 29

Algorithm 3 KNN-Predict(D, K, x̂)
1: S← []
2: for n = 1 to N do
3: S← S ⊕ 〈d(xn, x̂), n〉 // store distance to training example n
4: end for
5: S← sort(S) // put lowest-distance objects first
6: ŷ ← 0
7: for k = 1 to K do
8: 〈dist,n〉 ← Sk // n this is the kth closest data point
9: ŷ ← ŷ + yn // vote according to the label for the nth training point

10: end for
11: return sign(ŷ) // return +1 if ŷ > 0 and −1 if ŷ < 0

example x that minimizes d(x, x̂). Since x is a training example, it has
a corresponding label, y. We predict that the label of x̂ is also y.

Figure 2.4: A figure showing an easy
NN classification problem where the
test point is a ? and should be positive,
but its NN is actually a negative point
that’s noisy.

Despite its simplicity, this nearest neighbor classifier is incred-
ibly effective. (Some might say frustratingly effective.) However, it
is particularly prone to overfitting label noise. Consider the data in
Figure 2.4. You would probably want to label the test point positive.
Unfortunately, it’s nearest neighbor happens to be negative. Since the
nearest neighbor algorithm only looks at the single nearest neighbor,
it cannot consider the “preponderance of evidence” that this point
should probably actually be a positive example. It will make an un-
necessary error.

A solution to this problem is to consider more than just the single
nearest neighbor when making a classification decision. We can con-
sider the K-nearest neighbors and let them vote on the correct class
for this test point. If you consider the 3-nearest neighbors of the test
point in Figure 2.4, you will see that two of them are positive and one
is negative. Through voting, positive would win. Why is it a good idea to use an odd

number for K??The full algorithm for K-nearest neighbor classification is given
in Algorithm 2.2. Note that there actually is no “training” phase for
K-nearest neighbors. In this algorithm we have introduced five new
conventions:

1. The training data is denoted by D.

2. We assume that there are N-many training examples.

3. These examples are pairs (x1, y1), (x2, y2), . . . , (xN , yN).
(Warning: do not confuse xn, the nth training example, with xd,
the dth feature for example x.)

4. We use []to denote an empty list and ⊕ · to append · to that list.

5. Our prediction on x̂ is called ŷ.

30 a course in machine learning

The first step in this algorithm is to compute distances from the
test point to all training points (lines 2-4). The data points are then
sorted according to distance. We then apply a clever trick of summing
the class labels for each of the K nearest neighbors (lines 6-10) and
using the sign of this sum as our prediction. Why is the sign of the sum com-

puted in lines 2-4 the same as the
majority vote of the associated
training examples?

?The big question, of course, is how to choose K. As we’ve seen,
with K = 1, we run the risk of overfitting. On the other hand, if
K is large (for instance, K = N), then KNN-Predict will always
predict the majority class. Clearly that is underfitting. So, K is a
hyperparameter of the KNN algorithm that allows us to trade-off
between overfitting (small value of K) and underfitting (large value of
K).

Why can’t you simply pick the
value of K that does best on the
training data? In other words, why
do we have to treat it like a hy-
perparameter rather than just a
parameter.

?

One aspect of inductive bias that we’ve seen for KNN is that it
assumes that nearby points should have the same label. Another
aspect, which is quite different from decision trees, is that all features
are equally important! Recall that for decision trees, the key question
was which features are most useful for classification? The whole learning
algorithm for a decision tree hinged on finding a small set of good
features. This is all thrown away in KNN classifiers: every feature
is used, and they are all used the same amount. This means that if
you have data with only a few relevant features and lots of irrelevant
features, KNN is likely to do poorly.

Figure 2.5: A figure of a ski and snow-
board with width (mm) and height
(cm).

Figure 2.6: Classification data for ski vs
snowboard in 2d

A related issue with KNN is feature scale. Suppose that we are
trying to classify whether some object is a ski or a snowboard (see
Figure 2.5). We are given two features about this data: the width
and height. As is standard in skiing, width is measured in millime-
ters and height is measured in centimeters. Since there are only two
features, we can actually plot the entire training set; see Figure 2.6
where ski is the positive class. Based on this data, you might guess
that a KNN classifier would do well.

Figure 2.7: Classification data for ski vs
snowboard in 2d, with width rescaled
to mm.

Suppose, however, that our measurement of the width was com-
puted in millimeters (instead of centimeters). This yields the data
shown in Figure 2.7. Since the width values are now tiny, in compar-
ison to the height values, a KNN classifier will effectively ignore the
width values and classify almost purely based on height. The pre-
dicted class for the displayed test point had changed because of this
feature scaling.

We will discuss feature scaling more in Chapter 4. For now, it is
just important to keep in mind that KNN does not have the power to
decide which features are important.

geometry and nearest neighbors 31

2.3 Decision Boundaries

The standard way that we’ve been thinking about learning algo-
rithms up to now is in the query model. Based on training data, you
learn something. I then give you a query example and you have to
guess it’s label.

Figure 2.8: decision boundary for 1nn.

An alternative, less passive, way to think about a learned model
is to ask: what sort of test examples will it classify as positive, and
what sort will it classify as negative. In Figure 2.9, we have a set of
training data. The background of the image is colored blue in regions
that would be classified as positive (if a query were issued there)
and colored red in regions that would be classified as negative. This
coloring is based on a 1-nearest neighbor classifier.

In Figure 2.9, there is a solid line separating the positive regions
from the negative regions. This line is called the decision boundary
for this classifier. It is the line with positive land on one side and
negative land on the other side.

Figure 2.9: decision boundary for knn
with k=3.

Decision boundaries are useful ways to visualize the complex-
ity of a learned model. Intuitively, a learned model with a decision
boundary that is really jagged (like the coastline of Norway) is really
complex and prone to overfitting. A learned model with a decision
boundary that is really simple (like the bounary between Arizona
and Utah) is potentially underfit. In Figure ??, you can see the deci-
sion boundaries for KNN models with K ∈ {1, 3, 5, 7}. As you can
see, the boundaries become simpler and simpler as K gets bigger.

Figure 2.10: decision tree for ski vs.
snowboard

Now that you know about decision boundaries, it is natural to ask:
what do decision boundaries for decision trees look like? In order
to answer this question, we have to be a bit more formal about how
to build a decision tree on real-valued features. (Remember that the
algorithm you learned in the previous chapter implicitly assumed
binary feature values.) The idea is to allow the decision tree to ask
questions of the form: “is the value of feature 5 greater than 0.2?”
That is, for real-valued features, the decision tree nodes are param-
eterized by a feature and a threshold for that feature. An example
decision tree for classifying skis versus snowboards is shown in Fig-
ure 2.10.

Figure 2.11: decision boundary for dt in
previous figure

Now that a decision tree can handle feature vectors, we can talk
about decision boundaries. By example, the decision boundary for
the decision tree in Figure 2.10 is shown in Figure 2.11. In the figure,
space is first split in half according to the first query along one axis.
Then, depending on which half of the space you look at, it is either
split again along the other axis, or simply classified.

Figure 2.11 is a good visualization of decision boundaries for
decision trees in general. Their decision boundaries are axis-aligned

32 a course in machine learning

cuts. The cuts must be axis-aligned because nodes can only query on
a single feature at a time. In this case, since the decision tree was so
shallow, the decision boundary was relatively simple. What sort of data might yield a

very simple decision boundary with
a decision tree and very complex
decision boundary with 1-nearest
neighbor? What about the other
way around?

?2.4 K-Means Clustering

Up through this point, you have learned all about supervised learn-
ing (in particular, binary classification). As another example of the
use of geometric intuitions and data, we are going to temporarily
consider an unsupervised learning problem. In unsupervised learn-
ing, our data consists only of examples xn and does not contain corre-
sponding labels. Your job is to make sense of this data, even though
no one has provided you with correct labels. The particular notion of
“making sense of” that we will talk about now is the clustering task.

Figure 2.12: simple clustering data...
clusters in UL, UR and BC.

Consider the data shown in Figure 2.12. Since this is unsupervised
learning and we do not have access to labels, the data points are
simply drawn as black dots. Your job is to split this data set into
three clusters. That is, you should label each data point as A, B or C
in whatever way you want.

For this data set, it’s pretty clear what you should do. You prob-
ably labeled the upper-left set of points A, the upper-right set of
points B and the bottom set of points C. Or perhaps you permuted
these labels. But chances are your clusters were the same as mine.

The K-means clustering algorithm is a particularly simple and
effective approach to producing clusters on data like you see in Fig-
ure 2.12. The idea is to represent each cluster by it’s cluster center.
Given cluster centers, we can simply assign each point to its nearest
center. Similarly, if we know the assignment of points to clusters, we
can compute the centers. This introduces a chicken-and-egg problem.
If we knew the clusters, we could compute the centers. If we knew
the centers, we could compute the clusters. But we don’t know either.

Figure 2.13: first few iterations of
k-means running on previous data set

The general computer science answer to chicken-and-egg problems
is iteration. We will start with a guess of the cluster centers. Based
on that guess, we will assign each data point to its closest center.
Given these new assignments, we can recompute the cluster centers.
We repeat this process until clusters stop moving. The first few it-
erations of the K-means algorithm are shown in Figure 2.13. In this
example, the clusters converge very quickly.

Algorithm 2.4 spells out the K-means clustering algorithm in de-
tail. The cluster centers are initialized randomly. In line 6, data point
xn is compared against each cluster center µk. It is assigned to cluster
k if k is the center with the smallest distance. (That is the “argmin”
step.) The variable zn stores the assignment (a value from 1 to K) of
example n. In lines 8-12, the cluster centers are re-computed. First, Xk

geometry and nearest neighbors 33

Algorithm 4 K-Means(D, K)
1: for k = 1 to K do
2: µk ← some random location // randomly initialize mean for kth cluster
3: end for
4: repeat
5: for n = 1 to N do
6: zn ← argmink ||µk − xn|| // assign example n to closest center
7: end for
8: for k = 1 to K do
9: Xk ← { xn : zn = k } // points assigned to cluster k

10: µk ← mean(Xk) // re-estimate mean of cluster k
11: end for
12: until µs stop changing
13: return z // return cluster assignments

define vector addition, scalar addition, subtraction, scalar multiplication and norms. define mean.

MATH REVIEW | VECTOR ARITHMETIC, NORMS AND MEANS

Figure 2.14:

stores all examples that have been assigned to cluster k. The center of
cluster k, µk is then computed as the mean of the points assigned to
it. This process repeats until the means converge.

An obvious question about this algorithm is: does it converge?
A second question is: how long does it take to converge. The first
question is actually easy to answer. Yes, it does. And in practice, it
usually converges quite quickly (usually fewer than 20 iterations). In
Chapter 13, we will actually prove that it converges. The question of
how long it takes to converge is actually a really interesting question.
Even though the K-means algorithm dates back to the mid 1950s, the
best known convergence rates were terrible for a long time. Here, ter-
rible means exponential in the number of data points. This was a sad
situation because empirically we knew that it converged very quickly.
New algorithm analysis techniques called “smoothed analysis” were
invented in 2001 and have been used to show very fast convergence
for K-means (among other algorithms). These techniques are well
beyond the scope of this book (and this author!) but suffice it to say
that K-means is fast in practice and is provably fast in theory.

It is important to note that although K-means is guaranteed to
converge and guaranteed to converge quickly, it is not guaranteed to
converge to the “right answer.” The key problem with unsupervised
learning is that we have no way of knowing what the “right answer”
is. Convergence to a bad solution is usually due to poor initialization.
For example, poor initialization in the data set from before yields
convergence like that seen in Figure ??. As you can see, the algorithm

34 a course in machine learning

has converged. It has just converged to something less than satisfac-
tory. What is the difference between un-

supervised and supervised learning
that means that we know what the
“right answer” is for supervised
learning but not for unsupervised
learning?

?2.5 Warning: High Dimensions are Scary

Visualizing one hundred dimensional space is incredibly difficult for
humans. After huge amounts of training, some people have reported
that they can visualize four dimensional space in their heads. But
beyond that seems impossible.1

1 If you want to try to get an intu-
itive sense of what four dimensions
looks like, I highly recommend the
short 1884 book Flatland: A Romance
of Many Dimensions by Edwin Abbott
Abbott. You can even read it online at
gutenberg.org/ebooks/201.

In addition to being hard to visualize, there are at least two addi-
tional problems in high dimensions, both refered to as the curse of
dimensionality. One is computational, the other is mathematical.

Figure 2.15: 2d knn with an overlaid
grid, cell with test point highlighted

From a computational perspective, consider the following prob-
lem. For K-nearest neighbors, the speed of prediction is slow for a
very large data set. At the very least you have to look at every train-
ing example every time you want to make a prediction. To speed
things up you might want to create an indexing data structure. You
can break the plane up into a grid like that shown in Figure 2.15.
Now, when the test point comes in, you can quickly identify the grid
cell in which it lies. Now, instead of considering all training points,
you can limit yourself to training points in that grid cell (and perhaps
the neighboring cells). This can potentially lead to huge computa-
tional savings.

In two dimensions, this procedure is effective. If we want to break
space up into a grid whose cells are 0.2×0.2, we can clearly do this
with 25 grid cells in two dimensions (assuming the range of the
features is 0 to 1 for simplicity). In three dimensions, we’ll need
125 = 5×5×5 grid cells. In four dimensions, we’ll need 625. By the
time we get to “low dimensional” data in 20 dimensions, we’ll need
95, 367, 431, 640, 625 grid cells (that’s 95 trillion, which is about 6 to
7 times the US national debt as of January 2011). So if you’re in 20
dimensions, this gridding technique will only be useful if you have at
least 95 trillion training examples.

For “medium dimensional” data (approximately 1000) dimesions,
the number of grid cells is a 9 followed by 698 numbers before the
decimal point. For comparison, the number of atoms in the universe
is approximately 1 followed by 80 zeros. So even if each atom yielded
a googul training examples, we’d still have far fewer examples than
grid cells. For “high dimensional” data (approximately 100000) di-
mensions, we have a 1 followed by just under 70, 000 zeros. Far too
big a number to even really comprehend.

Suffice it to say that for even moderately high dimensions, the
amount of computation involved in these problems is enormous. How does the above analysis relate

to the number of data points you
would need to fill out a full decision
tree with D-many features? What
does this say about the importance
of shallow trees?

?
In addition to the computational difficulties of working in high

gutenberg.org/ebooks/201

geometry and nearest neighbors 35

dimensions, there are a large number of strange mathematical oc-
curances there. In particular, many of your intuitions that you’ve
built up from working in two and three dimensions just do not carry
over to high dimensions. We will consider two effects, but there are
countless others. The first is that high dimensional spheres look more
like porcupines than like balls.2 The second is that distances between 2 This result was related to me by Mark

Reid, who heard about it from Marcus
Hutter.

points in high dimensions are all approximately the same.

Figure 2.16: 2d spheres in spheres

Let’s start in two dimensions as in Figure 2.16. We’ll start with
four green spheres, each of radius one and each touching exactly two
other green spheres. (Remember that in two dimensions a “sphere”
is just a “circle.”) We’ll place a red sphere in the middle so that it
touches all four green spheres. We can easily compute the radius of
this small sphere. The pythagorean theorem says that 12 + 12 = (1 +

r)2, so solving for r we get r =
√

2− 1 ≈ 0.41. Thus, by calculation,
the blue sphere lies entirely within the cube (cube = square) that
contains the grey spheres. (Yes, this is also obvious from the picture,
but perhaps you can see where this is going.)

Figure 2.17: 3d spheres in spheres

Now we can do the same experiment in three dimensions, as
shown in Figure 2.17. Again, we can use the pythagorean theorem
to compute the radius of the blue sphere. Now, we get 12 + 12 + 12 =

(1 + r)2, so r =
√

3− 1 ≈ 0.73. This is still entirely enclosed in the
cube of width four that holds all eight grey spheres.

At this point it becomes difficult to produce figures, so you’ll
have to apply your imagination. In four dimensions, we would have
16 green spheres (called hyperspheres), each of radius one. They
would still be inside a cube (called a hypercube) of width four. The
blue hypersphere would have radius r =

√
4− 1 = 1. Continuing

to five dimensions, the blue hypersphere embedded in 256 green
hyperspheres would have radius r =

√
5− 1 ≈ 1.23 and so on.

In general, in D-dimensional space, there will be 2D green hyper-
spheres of radius one. Each green hypersphere will touch exactly
n-many other hyperspheres. The blue hyperspheres in the middle
will touch them all and will have radius r =

√
D− 1.

Think about this for a moment. As the number of dimensions
grows, the radius of the blue hypersphere grows without bound!. For
example, in 9-dimensions the radius of the blue hypersphere is now√

9− 1 = 2. But with a radius of two, the blue hypersphere is now
“squeezing” between the green hypersphere and touching the edges
of the hypercube. In 10 dimensional space, the radius is approxi-
mately 2.16 and it pokes outside the cube.

Figure 2.18: porcupine versus ball

This is why we say that high dimensional spheres look like por-
cupines and not balls (see Figure 2.18). The moral of this story from
a machine learning perspective is that intuitions you have about space
might not carry over to high dimensions. For example, what you

36 a course in machine learning

think looks like a “round” cluster in two or three dimensions, might
not look so “round” in high dimensions.

0.0 0.2 0.4 0.6 0.8 1.0
0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.40.60.81.0
0.0
0.2
0.4
0.6
0.8
1.0

Figure 2.19: 100 uniform random points
in 1, 2 and 3 dimensions

The second strange fact we will consider has to do with the dis-
tances between points in high dimensions. We start by considering
random points in one dimension. That is, we generate a fake data set
consisting of 100 random points between zero and one. We can do
the same in two dimensions and in three dimensions. See Figure 2.19

for data distributed uniformly on the unit hypercube in different
dimensions.

Now, pick two of these points at random and compute the dis-
tance between them. Repeat this process for all pairs of points and
average the results. For the data shown in Figure 2.19, the average
distance between points in one dimension is about 0.346; in two di-
mensions is about 0.518; and in three dimensions is 0.615. The fact
that these increase as the dimension increases is not surprising. The
furthest two points can be in a 1-dimensional hypercube (line) is 1;
the furthest in a 2-dimensional hypercube (square) is

√
2 (opposite

corners); the furthest in a 3-d hypercube is
√

3 and so on. In general,
the furthest two points in a D-dimensional hypercube will be

√
D.

You can actually compute these values analytically. Write UniD

for the uniform distribution in D dimensions. The quantity we are
interested in computing is:

avgDist(D) = Ea∼UniD

[
Eb∼UniD

[
||a− b||

]]
(2.2)

We can actually compute this in closed form (see Exercise ?? for a bit
of calculus refresher) and arrive at avgDist(D) =

√
D/3. Because

we know that the maximum distance between two points grows like√
D, this says that the ratio between average distance and maximum

distance converges to 1/3.
What is more interesting, however, is the variance of the distribu-

tion of distances. You can show that in D dimensions, the variance
is constant 1/

√
18, independent of D. This means that when you look

at (variance) divided-by (max distance), the variance behaves like
1/
√

18D, which means that the effective variance continues to shrink
as D grows 3. 3 Sergey Brin. Near neighbor search in

large metric spaces. In Conference on
Very Large Databases (VLDB), 1995

0.0 0.2 0.4 0.6 0.8 1.0
distance / sqrt(dimensionality)

0

2000

4000

6000

8000

10000

12000

14000

of

 p
ai

rs
 o

f p
oi

nt
s

at
 th

at
 d

is
ta

nc
e

dimensionality versus uniform point distances

2 dims
8 dims
32 dims
128 dims
512 dims

Figure 2.20: histogram of distances in
D=2,8,32,128,512

When I first saw and re-proved this result, I was skeptical, as I
imagine you are. So I implemented it. In Figure 2.20 you can see
the results. This presents a histogram of distances between random
points in D dimensions for D ∈ {1, 2, 3, 10, 20, 100}. As you can see,
all of these distances begin to concentrate around 0.4

√
D, even for

“medium dimension” problems.
You should now be terrified: the only bit of information that KNN

gets is distances. And you’ve just seen that in moderately high di-
mensions, all distances becomes equal. So then isn’t it the case that

geometry and nearest neighbors 37

KNN simply cannot work?

Figure 2.21: knn:mnist: histogram of
distances in multiple D for mnist

The answer has to be no. The reason is that the data that we get
is not uniformly distributed over the unit hypercube. We can see this
by looking at two real-world data sets. The first is an image data set
of hand-written digits (zero through nine); see Section ??. Although
this data is originally in 256 dimensions (16 pixels by 16 pixels), we
can artifically reduce the dimensionality of this data. In Figure 2.21

you can see the histogram of average distances between points in this
data at a number of dimensions.

As you can see from these histograms, distances have not con-
centrated around a single value. This is very good news: it means
that there is hope for learning algorithms to work! Nevertheless, the
moral is that high dimensions are weird.

2.6 Extensions to KNN

There are several fundamental problems with KNN classifiers. First,
some neighbors might be “better” than others. Second, test-time per-
formance scales badly as your number of training examples increases.
Third, it treats each dimension independently. We will not address
the third issue, as it has not really been solved (though it makes a
great thought question!).

Figure 2.22: data set with 5nn, test point
closest to two negatives, then to three
far positives

Regarding neighborliness, consider Figure 2.22. Using K = 5 near-
est neighbors, the test point would be classified as positive. However,
we might actually believe that it should be classified negative because
the two negative neighbors are much closer than the three positive
neighbors.

Figure 2.23: same as previous with ε
ball

There are at least two ways of addressing this issue. The first is the
ε-ball solution. Instead of connecting each data point to some fixed
number (K) of nearest neighbors, we simply connect it to all neigh-
bors that fall within some ball of radius ε. Then, the majority class of
all the points in the ε ball wins. In the case of a tie, you would have
to either guess, or report the majority class. Figure 2.23 shows an ε

ball around the test point that happens to yield the proper classifica-
tion.

When using ε-ball nearest neighbors rather than KNN, the hyper-
parameter changes from K to ε. You would need to set it in the same
way as you would for KNN.

One issue with ε-balls is that the
ε-ball for some test point might
be empty. How would you handle
this?

?

An alternative to the ε-ball solution is to do weighted nearest
neighbors. The idea here is to still consider the K-nearest neighbors
of a test point, but give them uneven votes. Closer points get more
vote than further points. When classifying a point x̂, the usual strat-
egy is to give a training point xn a vote that decays exponentially in
the distance between x̂ and xn. Mathematically, the vote that neigh-

38 a course in machine learning

bor n gets is:

exp
[
−1

2
||x̂− xn||2

]
(2.3)

Thus, nearby points get a vote very close to 1 and far away points get
a vote very close to 0. The overall prediction is positive if the sum
of votes from positive neighbors outweighs the sum of votes from
negative neighbors. Could you combine the ε-ball idea

with the weighted voting idea?
Does it make sense, or does one
idea seem to trump the other?

?The second issue with KNN is scaling. To predict the label of a
single test point, we need to find the K nearest neighbors of that
test point in the training data. With a standard implementation, this
will take O(ND + K log K) time4. For very large data sets, this is

4 The ND term comes from computing
distances between the test point and
all training points. The K log K term
comes from finding the K smallest
values in the list of distances, using a
median-finding algorithm. Of course,
ND almost always dominates K log K in
practice.

impractical.

Figure 2.24: knn:collapse: two figures
of points collapsed to mean, one with
good results and one with dire results

A first attempt to speed up the computation is to represent each
class by a representative. A natural choice for a representative would
be the mean. We would collapse all positive examples down to their
mean, and all negative examples down to their mean. We could then
just run 1-nearest neighbor and check whether a test point is closer
to the mean of the positive points or the mean of the negative points.
Figure 2.24 shows an example in which this would probably work
well, and an example in which this would probably work poorly. The
problem is that collapsing each class to its mean is too aggressive.

Figure 2.25: knn:collapse2: data from
previous bad case collapsed into L=2

cluster and test point classified based
on means and 1-nn

A less aggressive approach is to make use of the K-means algo-
rithm for clustering. You can cluster the positive examples into L
clusters (we are using L to avoid variable overloading!) and then
cluster the negative examples into L separate clusters. This is shown
in Figure 2.25 with L = 2. Instead of storing the entire data set,
you would only store the means of the L positive clusters and the
means of the L negative clusters. At test time, you would run the
K-nearest neighbors algorithm against these means rather than
against the full training set. This leads to a much faster runtime of
just O(LD + K log K), which is probably dominated by LD.

Clustering of classes was intro-
duced as a way of making things
faster. Will it make things worse, or
could it help?

?

2.7 Exercises

Exercise 2.1. TODO. . .

	Geometry and Nearest Neighbors
	From Data to Feature Vectors
	K-Nearest Neighbors
	Decision Boundaries
	K-Means Clustering
	Warning: High Dimensions are Scary
	Extensions to KNN
	Exercises

