
A Course in
Machine Learning

Hal Daumé III

1 | DECISION TREES

Dependencies: None.

At a basic level, machine learning is about predicting the fu-
ture based on the past. For instance, you might wish to predict how
much a user Alice will like a movie that she hasn’t seen, based on
her ratings of movies that she has seen. This means making informed
guesses about some unobserved property of some object, based on
observed properties of that object.

The first question we’ll ask is: what does it mean to learn? In
order to develop learning machines, we must know what learning
actually means, and how to determine success (or failure). You’ll see
this question answered in a very limited learning setting, which will
be progressively loosened and adapted throughout the rest of this
book. For concreteness, our focus will be on a very simple model of
learning called a decision tree.

todo

VIGNETTE: ALICE DECIDES WHICH CLASSES TO TAKE

1.1 What Does it Mean to Learn?

Alice has just begun taking a course on machine learning. She knows
that at the end of the course, she will be expected to have “learned”
all about this topic. A common way of gauging whether or not she
has learned is for her teacher, Bob, to give her a exam. She has done
well at learning if she does well on the exam.

But what makes a reasonable exam? If Bob spends the entire
semester talking about machine learning, and then gives Alice an
exam on History of Pottery, then Alice’s performance on this exam
will not be representative of her learning. On the other hand, if the
exam only asks questions that Bob has answered exactly during lec-
tures, then this is also a bad test of Alice’s learning, especially if it’s
an “open notes” exam. What is desired is that Alice observes specific

Learning Objectives:
• Explain the difference between

memorization and generalization.

• Define “inductive bias” and recog-
nize the role of inductive bias in
learning.

• Take a concrete task and cast it as a
learning problem, with a formal no-
tion of input space, features, output
space, generating distribution and
loss function.

• Illustrate how regularization trades
off between underfitting and overfit-
ting.

• Evaluate whether a use of test data
is “cheating” or not.

The words printed here are concepts.
You must go through the experiences. – Carl Frederick

decision trees 9

examples from the course, and then has to answer new, but related
questions on the exam. This tests whether Alice has the ability to
generalize. Generalization is perhaps the most central concept in
machine learning.

As a running concrete example in this book, we will use that of a
course recommendation system for undergraduate computer science
students. We have a collection of students and a collection of courses.
Each student has taken, and evaluated, a subset of the courses. The
evaluation is simply a score from −2 (terrible) to +2 (awesome). The
job of the recommender system is to predict how much a particular
student (say, Alice) will like a particular course (say, Algorithms).

Given historical data from course ratings (i.e., the past) we are
trying to predict unseen ratings (i.e., the future). Now, we could
be unfair to this system as well. We could ask it whether Alice is
likely to enjoy the History of Pottery course. This is unfair because
the system has no idea what History of Pottery even is, and has no
prior experience with this course. On the other hand, we could ask
it how much Alice will like Artificial Intelligence, which she took
last year and rated as +2 (awesome). We would expect the system to
predict that she would really like it, but this isn’t demonstrating that
the system has learned: it’s simply recalling its past experience. In
the former case, we’re expecting the system to generalize beyond its
experience, which is unfair. In the latter case, we’re not expecting it
to generalize at all.

This general set up of predicting the future based on the past is
at the core of most machine learning. The objects that our algorithm
will make predictions about are examples. In the recommender sys-
tem setting, an example would be some particular Student/Course
pair (such as Alice/Algorithms). The desired prediction would be the
rating that Alice would give to Algorithms.

Figure 1.1: The general supervised ap-
proach to machine learning: a learning
algorithm reads in training data and
computes a learned function f . This
function can then automatically label
future text examples.

To make this concrete, Figure 1.1 shows the general framework of
induction. We are given training data on which our algorithm is ex-
pected to learn. This training data is the examples that Alice observes
in her machine learning course, or the historical ratings data for
the recommender system. Based on this training data, our learning
algorithm induces a function f that will map a new example to a cor-
responding prediction. For example, our function might guess that
f (Alice/Machine Learning) might be high because our training data
said that Alice liked Artificial Intelligence. We want our algorithm
to be able to make lots of predictions, so we refer to the collection
of examples on which we will evaluate our algorithm as the test set.
The test set is a closely guarded secret: it is the final exam on which
our learning algorithm is being tested. If our algorithm gets to peek
at it ahead of time, it’s going to cheat and do better than it should. Why is it bad if the learning algo-

rithm gets to peek at the test data??

10 a course in machine learning

The goal of inductive machine learning is to take some training
data and use it to induce a function f . This function f will be evalu-
ated on the test data. The machine learning algorithm has succeeded
if its performance on the test data is high.

1.2 Some Canonical Learning Problems

There are a large number of typical inductive learning problems.
The primary difference between them is in what type of thing they’re
trying to predict. Here are some examples:

Regression: trying to predict a real value. For instance, predict the
value of a stock tomorrow given its past performance. Or predict
Alice’s score on the machine learning final exam based on her
homework scores.

Binary Classification: trying to predict a simple yes/no response.
For instance, predict whether Alice will enjoy a course or not.
Or predict whether a user review of the newest Apple product is
positive or negative about the product.

Multiclass Classification: trying to put an example into one of a num-
ber of classes. For instance, predict whether a news story is about
entertainment, sports, politics, religion, etc. Or predict whether a
CS course is Systems, Theory, AI or Other.

Ranking: trying to put a set of objects in order of relevance. For in-
stance, predicting what order to put web pages in, in response to a
user query. Or predict Alice’s ranked preferences over courses she
hasn’t taken.

For each of these types of canon-
ical machine learning problems,
come up with one or two concrete
examples.

?The reason that it is convenient to break machine learning prob-
lems down by the type of object that they’re trying to predict has to
do with measuring error. Recall that our goal is to build a system
that can make “good predictions.” This begs the question: what does
it mean for a prediction to be “good?” The different types of learning
problems differ in how they define goodness. For instance, in regres-
sion, predicting a stock price that is off by $0.05 is perhaps much
better than being off by $200.00. The same does not hold of multi-
class classification. There, accidentally predicting “entertainment”
instead of “sports” is no better or worse than predicting “politics.”

1.3 The Decision Tree Model of Learning

The decision tree is a classic and natural model of learning. It is
closely related to the fundamental computer science notion of “di-
vide and conquer.” Although decision trees can be applied to many

decision trees 11

learning problems, we will begin with the simplest case: binary clas-
sification.

Suppose that your goal is to predict whether some unknown user
will enjoy some unknown course. You must simply answer “yes” or
“no.” In order to make a guess, you’re allowed to ask binary ques-
tions about the user/course under consideration. For example:

You: Is the course under consideration in Systems?
Me: Yes
You: Has this student taken any other Systems courses?
Me: Yes
You: Has this student liked most previous Systems courses?
Me: No
You: I predict this student will not like this course.
The goal in learning is to figure out what questions to ask, in what

order to ask them, and what answer to predict once you have asked
enough questions.

Figure 1.2: A decision tree for a course
recommender system, from which the
in-text “dialog” is drawn.

The decision tree is so-called because we can write our set of ques-
tions and guesses in a tree format, such as that in Figure 1.2. In this
figure, the questions are written in the internal tree nodes (rectangles)
and the guesses are written in the leaves (ovals). Each non-terminal
node has two children: the left child specifies what to do if the an-
swer to the question is “no” and the right child specifies what to do if
it is “yes.”

In order to learn, I will give you training data. This data consists
of a set of user/course examples, paired with the correct answer for
these examples (did the given user enjoy the given course?). From
this, you must construct your questions. For concreteness, there is a
small data set in Table ?? in the Appendix of this book. This training
data consists of 20 course rating examples, with course ratings and
answers to questions that you might ask about this pair. We will
interpret ratings of 0, +1 and +2 as “liked” and ratings of −2 and −1
as “hated.”

In what follows, we will refer to the questions that you can ask as
features and the responses to these questions as feature values. The
rating is called the label. An example is just a set of feature values.
And our training data is a set of examples, paired with labels.

There are a lot of logically possible trees that you could build,
even over just this small number of features (the number is in the
millions). It is computationally infeasible to consider all of these to
try to choose the “best” one. Instead, we will build our decision tree
greedily. We will begin by asking:

If I could only ask one question, what question would I ask?

Figure 1.3: A histogram of labels for (a)
the entire data set; (b-e) the examples
in the data set for each value of the first
four features.

You want to find a feature that is most useful in helping you guess
whether this student will enjoy this course.1 A useful way to think

1 A colleague related the story of
getting his 8-year old nephew to
guess a number between 1 and 100.
His nephew’s first four questions
were: Is it bigger than 20? (YES) Is
it even? (YES) Does it have a 7 in it?
(NO) Is it 80? (NO). It took 20 more
questions to get it, even though 10

should have been sufficient. At 8,
the nephew hadn’t quite figured out
how to divide and conquer. http:
//blog.computationalcomplexity.
org/2007/04/
getting-8-year-old-interested-in.
html.

http://blog.computationalcomplexity.org/2007/04/getting-8-year-old-interested-in.html
http://blog.computationalcomplexity.org/2007/04/getting-8-year-old-interested-in.html
http://blog.computationalcomplexity.org/2007/04/getting-8-year-old-interested-in.html
http://blog.computationalcomplexity.org/2007/04/getting-8-year-old-interested-in.html
http://blog.computationalcomplexity.org/2007/04/getting-8-year-old-interested-in.html

12 a course in machine learning

about this is to look at the histogram of labels for each feature. This
is shown for the first four features in Figure 1.3. Each histogram
shows the frequency of “like”/“hate” labels for each possible value
of an associated feature. From this figure, you can see that asking
the first feature is not useful: if the value is “no” then it’s hard to
guess the label; similarly if the answer is “yes.” On the other hand,
asking the second feature is useful: if the value is “no,” you can be
pretty confident that this student will hate this course; if the answer
is “yes,” you can be pretty confident that this student will like this
course.

More formally, you will consider each feature in turn. You might
consider the feature “Is this a System’s course?” This feature has two
possible value: no and yes. Some of the training examples have an
answer of “no” – let’s call that the “NO” set. Some of the training
examples have an answer of “yes” – let’s call that the “YES” set. For
each set (NO and YES) we will build a histogram over the labels.
This is the second histogram in Figure 1.3. Now, suppose you were
to ask this question on a random example and observe a value of
“no.” Further suppose that you must immediately guess the label for
this example. You will guess “like,” because that’s the more preva-
lent label in the NO set (actually, it’s the only label in the NO set).
Alternatively, if you recieve an answer of “yes,” you will guess “hate”
because that is more prevalent in the YES set.

So, for this single feature, you know what you would guess if you
had to. Now you can ask yourself: if I made that guess on the train-
ing data, how well would I have done? In particular, how many ex-
amples would I classify correctly? In the NO set (where you guessed
“like”) you would classify all 10 of them correctly. In the YES set
(where you guessed “hate”) you would classify 8 (out of 10) of them
correctly. So overall you would classify 18 (out of 20) correctly. Thus,
we’ll say that the score of the “Is this a System’s course?” question is
18/20. How many training examples

would you classify correctly for
each of the other three features
from Figure 1.3?

?You will then repeat this computation for each of the available
features to us, compute the scores for each of them. When you must
choose which feature consider first, you will want to choose the one
with the highest score.

But this only lets you choose the first feature to ask about. This
is the feature that goes at the root of the decision tree. How do we
choose subsequent features? This is where the notion of divide and
conquer comes in. You’ve already decided on your first feature: “Is
this a Systems course?” You can now partition the data into two parts:
the NO part and the YES part. The NO part is the subset of the data
on which value for this feature is “no”; the YES half is the rest. This
is the divide step.

decision trees 13

Algorithm 1 DecisionTreeTrain(data, remaining features)
1: guess← most frequent answer in data // default answer for this data
2: if the labels in data are unambiguous then
3: return Leaf(guess) // base case: no need to split further
4: else if remaining features is empty then
5: return Leaf(guess) // base case: cannot split further
6: else // we need to query more features
7: for all f ∈ remaining features do
8: NO← the subset of data on which f =no
9: YES← the subset of data on which f =yes

10: score[f]← # of majority vote answers in NO
11: + # of majority vote answers in YES

// the accuracy we would get if we only queried on f
12: end for
13: f ← the feature with maximal score(f)
14: NO← the subset of data on which f =no
15: YES← the subset of data on which f =yes
16: left← DecisionTreeTrain(NO, remaining features \ {f})
17: right← DecisionTreeTrain(YES, remaining features \ {f})
18: return Node(f , left, right)
19: end if

Algorithm 2 DecisionTreeTest(tree, test point)
1: if tree is of the form Leaf(guess) then
2: return guess
3: else if tree is of the form Node(f , left, right) then
4: if f = yes in test point then
5: return DecisionTreeTest(left, test point)
6: else
7: return DecisionTreeTest(right, test point)
8: end if
9: end if

The conquer step is to recurse, and run the same routine (choosing
the feature with the highest score) on the NO set (to get the left half
of the tree) and then separately on the YES set (to get the right half of
the tree).

At some point it will become useless to query on additional fea-
tures. For instance, once you know that this is a Systems course,
you know that everyone will hate it. So you can immediately predict
“hate” without asking any additional questions. Similarly, at some
point you might have already queried every available feature and still
not whittled down to a single answer. In both cases, you will need to
create a leaf node and guess the most prevalent answer in the current
piece of the training data that you are looking at.

Putting this all together, we arrive at the algorithm shown in Al-
gorithm 1.3.2 This function, DecisionTreeTrain takes two argu- 2 There are more nuanced algorithms

for building decision trees, some of
which are discussed in later chapters of
this book. They primarily differ in how
they compute the score funciton.

14 a course in machine learning

ments: our data, and the set of as-yet unused features. It has two
base cases: either the data is unambiguous, or there are no remaining
features. In either case, it returns a Leaf node containing the most
likely guess at this point. Otherwise, it loops over all remaining fea-
tures to find the one with the highest score. It then partitions the data
into a NO/YES split based on the best feature. It constructs its left
and right subtrees by recursing on itself. In each recursive call, it uses
one of the partitions of the data, and removes the just-selected feature
from consideration. Is Algorithm 1.3 guaranteed to

terminate??The corresponding prediction algorithm is shown in Algorithm 1.3.
This function recurses down the decision tree, following the edges
specified by the feature values in some test point. When it reaches a
leaf, it returns the guess associated with that leaf.

TODO: define outlier somewhere!

1.4 Formalizing the Learning Problem

As you’ve seen, there are several issues that we must take into ac-
count when formalizing the notion of learning.

• The performance of the learning algorithm should be measured on
unseen “test” data.

• The way in which we measure performance should depend on the
problem we are trying to solve.

• There should be a strong relationship between the data that our
algorithm sees at training time and the data it sees at test time.

In order to accomplish this, let’s assume that someone gives us a
loss function, `(·, ·), of two arguments. The job of ` is to tell us how
“bad” a system’s prediction is in comparison to the truth. In particu-
lar, if y is the truth and ŷ is the system’s prediction, then `(y, ŷ) is a
measure of error.

For three of the canonical tasks discussed above, we might use the
following loss functions:

Regression: squared loss `(y, ŷ) = (y− ŷ)2

or absolute loss `(y, ŷ) = |y− ŷ|.

Binary Classification: zero/one loss `(y, ŷ) =

{
0 if y = ŷ
1 otherwise

This notation means that the loss is zero
if the prediction is correct and is one
otherwise.

Multiclass Classification: also zero/one loss.

Why might it be a bad idea to use
zero/one loss to measure perfor-
mance for a regression problem?

?Note that the loss function is something that you must decide on
based on the goals of learning.

decision trees 15

Now that we have defined our loss function, we need to consider
where the data (training and test) comes from. The model that we
will use is the probabilistic model of learning. Namely, there is a prob-
ability distribution D over input/output pairs. This is often called
the data generating distribution. If we write x for the input (the
user/course pair) and y for the output (the rating), then D is a distri-
bution over (x, y) pairs.

A useful way to think about D is that it gives high probability to
reasonable (x, y) pairs, and low probability to unreasonable (x, y)
pairs. A (x, y) pair can be unreasonable in two ways. First, x might
be an unusual input. For example, a x related to an “Intro to Java”
course might be highly probable; a x related to a “Geometric and
Solid Modeling” course might be less probable. Second, y might
be an unusual rating for the paired x. For instance, if Alice were to
take AI 100 times (without remembering that she took it before!),
she would give the course a +2 almost every time. Perhaps some
semesters she might give a slightly lower score, but it would be un-
likely to see x =Alice/AI paired with y = −2.

It is important to remember that we are not making any assump-
tions about what the distribution D looks like. (For instance, we’re
not assuming it looks like a Gaussian or some other, common distri-
bution.) We are also not assuming that we know what D is. In fact,
if you know a priori what your data generating distribution is, your
learning problem becomes significantly easier. Perhaps the hardest
thing about machine learning is that we don’t know what D is: all we
get is a random sample from it. This random sample is our training
data.

Our learning problem, then, is defined by two quantities: Consider the following prediction
task. Given a paragraph written
about a course, we have to predict
whether the paragraph is a positive
or negative review of the course.
(This is the sentiment analysis prob-
lem.) What is a reasonable loss
function? How would you define
the data generating distribution?

?

1. The loss function `, which captures our notion of what is important
to learn.

2. The data generating distribution D, which defines what sort of
data we expect to see.

We are given access to training data, which is a random sample of
input/output pairs drawn from D. Based on this training data, we
need to induce a function f that maps new inputs x̂ to corresponding
prediction ŷ. The key property that f should obey is that it should do
well (as measured by `) on future examples that are also drawn from
D. Formally, it’s expected loss ε over D with repsect to ` should be
as small as possible:

ε , E(x,y)∼D
[
`(y, f (x))

]
= ∑

(x,y)
D(x, y)`(y, f (x)) (1.1)

16 a course in machine learning

The difficulty in minimizing our expected loss from Eq (1.1) is
that we don’t know what D is! All we have access to is some training
data sampled from it! Suppose that we denote our training data
set by D. The training data consists of N-many input/output pairs,
(x1, y1), (x2, y2), . . . , (xN , yN). Given a learned function f , we can
compute our training error, ε̂:

ε̂ ,
1
N

N

∑
n=1

`(yn, f (xn)) (1.8)

That is, our training error is simply our average error over the train-
ing data. Verify by calculation that we

can write our training error as
E(x,y)∼D

[
`(y, f (x))

]
, by thinking

of D as a distribution that places
probability 1/N to each example in
D and probabiliy 0 on everything
else.

?

Of course, we can drive ε̂ to zero by simply memorizing our train-
ing data. But as Alice might find in memorizing past exams, this
might not generalize well to a new exam!

This is the fundamental difficulty in machine learning: the thing
we have access to is our training error, ε̂. But the thing we care about
minimizing is our expected error ε. In order to get the expected error
down, our learned function needs to generalize beyond the training
data to some future data that it might not have seen yet!

So, putting it all together, we get a formal definition of induction
machine learning: Given (i) a loss function ` and (ii) a sample D
from some unknown distribution D, you must compute a function
f that has low expected error ε over D with respect to `.

1.5 Inductive Bias: What We Know Before the Data Arrives

decision trees 17

In this book, we will often write things like E(x,y)∼D [`(y, f (x))] for the expected loss. Here, as always,
expectation means “average.” In words, this is saying “if you drew a bunch of (x, y) pairs indepen-
dently at random from D, what would your average loss be? (More formally, what would be the aver-
age of `(y, f (x)) be over these random draws?)

More formally, if D is a discrete probability distribution, then this expectation can be expanded as:

E(x,y)∼D [`(y, f (x))] = ∑
(x,y)∈D

[D(x, y)`(y, f (x))] (1.2)

This is exactly the weighted average loss over the all (x, y) pairs in D, weighted by their probability
(namely, D(x, y)) under this distribution D.

In particular, if D is a finite discrete distribution, for instance one defined by a finite data set
{(x1, y1), . . . , (xN , yN) that puts equal weight on each example (in this case, equal weight means proba-
bility 1/N), then we get:

E(x,y)∼D[`(y, f (x))] = ∑
(x,y)∈D

[D(x, y)`(y, f (x))] definition of expectation (1.3)

=
N

∑
n=1

[D(xn, yn)`(yn, f (xn))] D is discrete and finite (1.4)

=
N

∑
n=1

[
1
N
`(yn, f (xn))] definition of D (1.5)

=
1
N

N

∑
n=1

[`(yn, f (xn))] rearranging terms (1.6)

Which is exactly the average loss on that dataset.

In the case that the distribution is continuous, we need to replace the discrete sum with a continuous
integral over some space Ω:

E(x,y)∼D [`(y, f (x))] =
∫

Ω
D(x, y)`(y, f (x))dxdy (1.7)

This is exactly the same but in continuous space rather than discrete space.
The most important thing to remember is that there are two equivalent ways to think about expections:

1. The expectation of some function g is the weighted average value of g, where the weights are given by
the underlying probability distribution.

2. The expectation of some function g is your best guess of the value of g if you were to draw a single
item from the underlying probability distribution.

MATH REVIEW | EXPECTATED VALUES

Figure 1.4:

18 a course in machine learning

Figure 1.5: dt:bird: bird training
images

Figure 1.6: dt:birdtest: bird test
images

In Figure 1.5 you’ll find training data for a binary classification
problem. The two labels are “A” and “B” and you can see five exam-
ples for each label. Below, in Figure 1.6, you will see some test data.
These images are left unlabeled. Go through quickly and, based on
the training data, label these images. (Really do it before you read
further! I’ll wait!)

Most likely you produced one of two labelings: either ABBAAB or
ABBABA. Which of these solutions is right?

The answer is that you cannot tell based on the training data. If
you give this same example to 100 people, 60− 70 of them come up
with the ABBAAB prediction and 30− 40 come up with the ABBABA
prediction. Why are they doing this? Presumably because the first
group believes that the relevant distinction is between “bird” and
“non-bird” while the second group believes that the relevant distinc-
tion is between “fly” and “no-fly.”

This preference for one distinction (bird/non-bird) over another
(fly/no-fly) is a bias that different human learners have. In the con-
text of machine learning, it is called inductive bias: in the absense of
data that narrow down the relevant concept, what type of solutions
are we more likely to prefer? Two thirds of people seem to have an
inductive bias in favor of bird/non-bird, and one third seem to have
an inductive bias in favor of fly/no-fly.

It is also possible that the correct
classification on the test data is
BABAAA. This corresponds to the
bias “is the background in focus.”
Somehow no one seems to come up
with this classification rule.

?

Throughout this book you will learn about several approaches to
machine learning. The decision tree model is the first such approach.
These approaches differ primarily in the sort of inductive bias that
they exhibit.

Consider a variant of the decision tree learning algorithm. In this
variant, we will not allow the trees to grow beyond some pre-defined
maximum depth, d. That is, once we have queried on d-many fea-
tures, we cannot query on any more and must just make the best
guess we can at that point. This variant is called a shallow decision
tree.

The key question is: What is the inductive bias of shallow decision
trees? Roughly, their bias is that decisions can be made by only look-
ing at a small number of features. For instance, a shallow decision
tree would be very good at learning a function like “students only
like AI courses.” It would be very bad at learning a function like “if
this student has liked an odd number of his past courses, he will like
the next one; otherwise he will not.” This latter is the parity function,
which requires you to inspect every feature to make a prediction. The
inductive bias of a decision tree is that the sorts of things we want
to learn to predict are more like the first example and less like the
second example.

decision trees 19

1.6 Not Everything is Learnable

Although machine learning works well—perhaps astonishingly
well—in many cases, it is important to keep in mind that it is not
magical. There are many reasons why a machine learning algorithm
might fail on some learning task.

There could be noise in the training data. Noise can occur both
at the feature level and at the label level. Some features might corre-
spond to measurements taken by sensors. For instance, a robot might
use a laser range finder to compute its distance to a wall. However,
this sensor might fail and return an incorrect value. In a sentiment
classification problem, someone might have a typo in their review of
a course. These would lead to noise at the feature level. There might
also be noise at the label level. A student might write a scathingly
negative review of a course, but then accidentally click the wrong
button for the course rating.

The features available for learning might simply be insufficient.
For example, in a medical context, you might wish to diagnose
whether a patient has cancer or not. You may be able to collect a
large amount of data about this patient, such as gene expressions,
X-rays, family histories, etc. But, even knowing all of this information
exactly, it might still be impossible to judge for sure whether this pa-
tient has cancer or not. As a more contrived example, you might try
to classify course reviews as positive or negative. But you may have
erred when downloading the data and only gotten the first five char-
acters of each review. If you had the rest of the features you might
be able to do well. But with this limited feature set, there’s not much
you can do.

Some examples may not have a single correct answer. You might
be building a system for “safe web search,” which removes offen-
sive web pages from search results. To build this system, you would
collect a set of web pages and ask people to classify them as “offen-
sive” or not. However, what one person considers offensive might be
completely reasonable for another person. It is common to consider
this as a form of label noise. Nevertheless, since you, as the designer
of the learning system, have some control over this problem, it is
sometimes helpful to isolate it as a source of difficulty.

Finally, learning might fail because the inductive bias of the learn-
ing algorithm is too far away from the concept that is being learned.
In the bird/non-bird data, you might think that if you had gotten
a few more training examples, you might have been able to tell
whether this was intended to be a bird/non-bird classification or a
fly/no-fly classification. However, no one I’ve talked to has ever come
up with the “background is in focus” classification. Even with many

20 a course in machine learning

more training points, this is such an unusual distinction that it may
be hard for anyone to figure out it. In this case, the inductive bias of
the learner is simply too misaligned with the target classification to
learn.

Note that the inductive bias source of error is fundamentally dif-
ferent than the other three sources of error. In the inductive bias case,
it is the particular learning algorithm that you are using that cannot
cope with the data. Maybe if you switched to a different learning
algorithm, you would be able to learn well. For instance, Neptunians
might have evolved to care greatly about whether backgrounds are
in focus, and for them this would be an easy classification to learn.
For the other three sources of error, it is not an issue to do with the
particular learning algorithm. The error is a fundamental part of the
learning problem.

1.7 Underfitting and Overfitting

As with many problems, it is useful to think about the extreme cases
of learning algorithms. In particular, the extreme cases of decision
trees. In one extreme, the tree is “empty” and we do not ask any
questions at all. We simply immediately make a prediction. In the
other extreme, the tree is “full.” That is, every possible question
is asked along every branch. In the full tree, there may be leaves
with no associated training data. For these we must simply choose
arbitrarily whether to say “yes” or “no.”

Consider the course recommendation data from Table ??. Sup-
pose we were to build an “empty” decision tree on this data. Such a
decision tree will make the same prediction regardless of its input,
because it is not allowed to ask any questions about its input. Since
there are more “likes” than “hates” in the training data (12 versus
8), our empty decision tree will simply always predict “likes.” The
training error, ε̂, is 8/20 = 40%.

On the other hand, we could build a “full” decision tree. Since
each row in this data is unique, we can guarantee that any leaf in a
full decision tree will have either 0 or 1 examples assigned to it (20
of the leaves will have one example; the rest will have none). For the
leaves corresponding to training points, the full decision tree will
always make the correct prediction. Given this, the training error, ε̂, is
0/20 = 0%.

Of course our goal is not to build a model that gets 0% error on
the training data. This would be easy! Our goal is a model that will
do well on future, unseen data. How well might we expect these two
models to do on future data? The “empty” tree is likely to do not
much better and not much worse on future data. We might expect

decision trees 21

that it would continue to get around 40% error.
Life is more complicated for the “full” decision tree. Certainly

if it is given a test example that is identical to one of the training
examples, it will do the right thing (assuming no noise). But for
everything else, it will only get about 50% error. This means that
even if every other test point happens to be identical to one of the
training points, it would only get about 25% error. In practice, this is
probably optimistic, and maybe only one in every 10 examples would
match a training example, yielding a 35% error. Convince yourself (either by proof

or by simulation) that even in the
case of imbalanced data – for in-
stance data that is on average 80%
positive and 20% negative – a pre-
dictor that guesses randomly (50/50

positive/negative) will get about
50% error.

?

So, in one case (empty tree) we’ve achieved about 40% error and
in the other case (full tree) we’ve achieved 35% error. This is not
very promising! One would hope to do better! In fact, you might
notice that if you simply queried on a single feature for this data, you
would be able to get very low training error, but wouldn’t be forced
to “guess” randomly.

Which feature is it, and what is it’s
training error??

This example illustrates the key concepts of underfitting and
overfitting. Underfitting is when you had the opportunity to learn
something but didn’t. A student who hasn’t studied much for an up-
coming exam will be underfit to the exam, and consequently will not
do well. This is also what the empty tree does. Overfitting is when
you pay too much attention to idiosyncracies of the training data,
and aren’t able to generalize well. Often this means that your model
is fitting noise, rather than whatever it is supposed to fit. A student
who memorizes answers to past exam questions without understand-
ing them has overfit the training data. Like the full tree, this student
also will not do well on the exam. A model that is neither overfit nor
underfit is the one that is expected to do best in the future.

1.8 Separation of Training and Test Data

Suppose that, after graduating, you get a job working for a company
that provides personalized recommendations for pottery. You go in
and implement new algorithms based on what you learned in your
machine learning class (you have learned the power of generaliza-
tion!). All you need to do now is convince your boss that you have
done a good job and deserve a raise!

How can you convince your boss that your fancy learning algo-
rithms are really working?

Based on what we’ve talked about already with underfitting and
overfitting, it is not enough to just tell your boss what your training
error is. Noise notwithstanding, it is easy to get a training error of
zero using a simple database query (or grep, if you prefer). Your boss
will not fall for that.

The easiest approach is to set aside some of your available data as

22 a course in machine learning

“test data” and use this to evaluate the performance of your learning
algorithm. For instance, the pottery recommendation service that you
work for might have collected 1000 examples of pottery ratings. You
will select 800 of these as training data and set aside the final 200
as test data. You will run your learning algorithms only on the 800
training points. Only once you’re done will you apply your learned
model to the 200 test points, and report your test error on those 200
points to your boss.

The hope in this process is that however well you do on the 200
test points will be indicative of how well you are likely to do in the
future. This is analogous to estimating support for a presidential
candidate by asking a small (random!) sample of people for their
opinions. Statistics (specifically, concentration bounds of which the
“Central limit theorem” is a famous example) tells us that if the sam-
ple is large enough, it will be a good representative. The 80/20 split
is not magic: it’s simply fairly well established. Occasionally people
use a 90/10 split instead, especially if they have a lot of data. If you have more data at your dis-

posal, why might a 90/10 split be
preferable to an 80/20 split?

?The cardinal rule of machine learning is: never touch your test
data. Ever. If that’s not clear enough:

Never ever touch your test data!
If there is only one thing you learn from this book, let it be that.

Do not look at your test data. Even once. Even a tiny peek. Once
you do that, it is not test data any more. Yes, perhaps your algorithm
hasn’t seen it. But you have. And you are likely a better learner than
your learning algorithm. Consciously or otherwise, you might make
decisions based on whatever you might have seen. Once you look at
the test data, your model’s performance on it is no longer indicative
of it’s performance on future unseen data. This is simply because
future data is unseen, but your “test” data no longer is.

1.9 Models, Parameters and Hyperparameters

The general approach to machine learning, which captures many ex-
isting learning algorithms, is the modeling approach. The idea is that
we come up with some formal model of our data. For instance, we
might model the classification decision of a student/course pair as a
decision tree. The choice of using a tree to represent this model is our
choice. We also could have used an arithmetic circuit or a polynomial
or some other function. The model tells us what sort of things we can
learn, and also tells us what our inductive bias is.

For most models, there will be associated parameters. These are
the things that we use the data to decide on. Parameters in a decision

decision trees 23

tree include: the specific questions we asked, the order in which we
asked them, and the classification decisions at the leaves. The job of
our decision tree learning algorithm DecisionTreeTrain is to take
data and figure out a good set of parameters.

Many learning algorithms will have additional knobs that you can
adjust. In most cases, these knobs amount to tuning the inductive
bias of the algorithm. In the case of the decision tree, an obvious
knob that one can tune is the maximum depth of the decision tree.
That is, we could modify the DecisionTreeTrain function so that
it stops recursing once it reaches some pre-defined maximum depth.
By playing with this depth knob, we can adjust between underfitting
(the empty tree, depth= 0) and overfitting (the full tree, depth= ∞). Go back to the DecisionTree-

Train algorithm and modify it so
that it takes a maximum depth pa-
rameter. This should require adding
two lines of code and modifying
three others.

?
Such a knob is called a hyperparameter. It is so called because it

is a parameter that controls other parameters of the model. The exact
definition of hyperparameter is hard to pin down: it’s one of those
things that are easier to identify than define. However, one of the
key identifiers for hyperparameters (and the main reason that they
cause consternation) is that they cannot be naively adjusted using the
training data.

In DecisionTreeTrain, as in most machine learning, the learn-
ing algorithm is essentially trying to adjust the parameters of the
model so as to minimize training error. This suggests an idea for
choosing hyperparameters: choose them so that they minimize train-
ing error.

What is wrong with this suggestion? Suppose that you were to
treat “maximum depth” as a hyperparameter and tried to tune it on
your training data. To do this, maybe you simply build a collection
of decision trees, tree0, tree1, tree2, . . . , tree100, where treed is a tree
of maximum depth d. We then computed the training error of each
of these trees and chose the “ideal” maximum depth as that which
minimizes training error? Which one would it pick?

The answer is that it would pick d = 100. Or, in general, it would
pick d as large as possible. Why? Because choosing a bigger d will
never hurt on the training data. By making d larger, you are simply
encouraging overfitting. But by evaluating on the training data, over-
fitting actually looks like a good idea!

An alternative idea would be to tune the maximum depth on test
data. This is promising because test data peformance is what we
really want to optimize, so tuning this knob on the test data seems
like a good idea. That is, it won’t accidentally reward overfitting. Of
course, it breaks our cardinal rule about test data: that you should
never touch your test data. So that idea is immediately off the table.

However, our “test data” wasn’t magic. We simply took our 1000
examples, called 800 of them “training” data and called the other 200

24 a course in machine learning

“test” data. So instead, let’s do the following. Let’s take our original
1000 data points, and select 700 of them as training data. From the
remainder, take 100 as development data3 and the remaining 200 3 Some people call this “validation

data” or “held-out data.”as test data. The job of the development data is to allow us to tune
hyperparameters. The general approach is as follows:

1. Split your data into 70% training data, 10% development data and
20% test data.

2. For each possible setting of your hyperparameters:

(a) Train a model using that setting of hyperparameters on the
training data.

(b) Compute this model’s error rate on the development data.

3. From the above collection of models, choose the one that achieved
the lowest error rate on development data.

4. Evaluate that model on the test data to estimate future test perfor-
mance.

In step 3, you could either choose
the model (trained on the 70% train-
ing data) that did the best on the
development data. Or you could
choose the hyperparameter settings
that did best and retrain the model
on the 80% union of training and
development data. Is either of these
options obviously better or worse?

?
1.10 Chapter Summary and Outlook

At this point, you should be able to use decision trees to do machine
learning. Someone will give you data. You’ll split it into training,
development and test portions. Using the training and development
data, you’ll find a good value for maximum depth that trades off
between underfitting and overfitting. You’ll then run the resulting
decision tree model on the test data to get an estimate of how well
you are likely to do in the future.

You might think: why should I read the rest of this book? Aside
from the fact that machine learning is just an awesome fun field to
learn about, there’s a lot left to cover. In the next two chapters, you’ll
learn about two models that have very different inductive biases than
decision trees. You’ll also get to see a very useful way of thinking
about learning: the geometric view of data. This will guide much of
what follows. After that, you’ll learn how to solve problems more
complicated that simple binary classification. (Machine learning
people like binary classification a lot because it’s one of the simplest
non-trivial problems that we can work on.) After that, things will
diverge: you’ll learn about ways to think about learning as a formal
optimization problem, ways to speed up learning, ways to learn
without labeled data (or with very little labeled data) and all sorts of
other fun topics.

decision trees 25

But throughout, we will focus on the view of machine learning
that you’ve seen here. You select a model (and its associated induc-
tive biases). You use data to find parameters of that model that work
well on the training data. You use development data to avoid under-
fitting and overfitting. And you use test data (which you’ll never look
at or touch, right?) to estimate future model performance. Then you
conquer the world.

1.11 Exercises

Exercise 1.1. TODO. . .

	Decision Trees
	What Does it Mean to Learn?
	Some Canonical Learning Problems
	The Decision Tree Model of Learning
	Formalizing the Learning Problem
	Inductive Bias: What We Know Before the Data Arrives
	Not Everything is Learnable
	Underfitting and Overfitting
	Separation of Training and Test Data
	Models, Parameters and Hyperparameters
	Chapter Summary and Outlook
	Exercises

