
A Course in
Machine Learning

Hal Daumé III

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e
Copyright © 2012 Hal Daumé III

http://ciml.info

This book is for the use of anyone anywhere at no cost and with almost no re-
strictions whatsoever. You may copy it or re-use it under the terms of the CIML
License online at ciml.info/LICENSE. Youmay not redistribute it yourself, but are
encouraged to provide a link to the CIML web page for others to download for
free. You may not charge a fee for printed versions, though you can print it for
your own use.

version 0.8 , August 2012

http://ciml.info

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

14|ExpectationMaximization

Dependencies:

Suppose you were building a naive Bayes model for a text cate-
gorization problem. After you were done, your boss told you that it
became prohibitively expensive to obtain labeled data. You now have
a probabilistic model that assumes access to labels, but you don’t
have any labels! Can you still do something?

Amazingly, you can. You can treat the labels as hidden variables,
and attempt to learn them at the same time as you learn the param-
eters of your model. A very broad family of algorithms for solving
problems just like this is the expectation maximization family. In this
chapter, you will derive expectation maximization (EM) algorithms
for clustering and dimensionality reduction, and then see why EM
works.

14.1 Clustering with a Mixture of Gaussians

In Chapter 7, you learned about probabilitic models for classification
based on density estimation. Let’s start with a fairly simple classifica-
tion model that assumes we have labeled data. We will shortly remove
this assumption. Our model will state that we have K classes, and
data from class k is drawn from a Gaussian with mean µk and vari-
ance σ2

k . The choice of classes is parameterized by θ. The generative
story for this model is:

1. For each example n = 1 . . . N:

(a) Choose a label yn ∼ Disc(θ)

(b) Choose example xn ∼ Nor(µyn
, σ2

yn)

This generative story can be directly translated into a likelihood as
before:

p(D) = ∏
n
Mult(yn | θ)Nor(xn | µyn

, σ2
yn) (14.1)

=

for each example︷ ︸︸ ︷
∏

n
θyn︸︷︷︸

choose label

[
2πσ2

yn

]− D
2 exp

[
− 1

2σ2
yn

∣∣∣∣∣∣xn − µyn

∣∣∣∣∣∣2]︸ ︷︷ ︸
choose feature values

(14.2)

Learning Objectives:
• Explain the relationship between

parameters and hidden variables.

• Construct generative stories for
clustering and dimensionality
reduction.

• Draw a graph explaining how EM
works by constructing convex lower
bounds.

• Implement EM for clustering with
mixtures of Gaussians, and contrast-
ing it with k-means.

• Evaluate the differences betweem
EM and gradient descent for hidden
variable models.

--

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

172 a course in machine learning

If you had access to labels, this would be all well and good, and
you could obtain closed form solutions for the maximum likelihood
estimates of all parameters by taking a log and then taking gradients
of the log likelihood:

θk = fraction of training examples in class k (14.3)

=
1
N ∑

n
[yn = k]

µk = mean of training examples in class k (14.4)

=
∑n[yn = k]xn

∑n[yn = k]

σ2
k = variance of training examples in class k (14.5)

=
∑n[yn = k] ||xn − µk||

∑n[yn = k]

Suppose that you don’t have labels. Analogously to the K-means You should be able to derive the
maximum likelihood solution re-
sults formally by now.

?algorithm, one potential solution is to iterate. You can start off with
guesses for the values of the unknown variables, and then iteratively
improve them over time. In K-means, the approach was the assign
examples to labels (or clusters). This time, instead of making hard
assignments (“example 10 belongs to cluster 4”), we’ll make soft as-
signments (“example 10 belongs half to cluster 4, a quarter to cluster
2 and a quarter to cluster 5”). So as not to confuse ourselves too
much, we’ll introduce a new variable, zn = 〈zn,1, . . . , zn,K (that sums
to one), to denote a fractional assignment of examples to clusters.

Figure 14.1: em:piecharts: A figure
showing pie charts

This notion of soft-assignments is visualized in Figure 14.1. Here,
we’ve depicted each example as a pie chart, and it’s coloring denotes
the degree to which it’s been assigned to each (of three) clusters. The
size of the pie pieces correspond to the zn values.

Formally, zn,k denotes the probability that example n is assigned to
cluster k:

zn,k = p(yn = k | xn) (14.6)

=
p(yn = k, xn)

p(xn)
(14.7)

=
1

Zn
Mult(k | θ)Nor(xn | µk, σ2

k) (14.8)

Here, the normalizer Zn is to ensure that zn sums to one.
Given a set of parameters (the θs, µs and σ2s), the fractional as-

signments zn,k are easy to compute. Now, akin to K-means, given
fractional assignments, you need to recompute estimates of the
model parameters. In analogy to the maximum likelihood solution
(Eqs (??)-(??)), you can do this by counting fractional points rather

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

expectation maximization 173

Algorithm 37 GMM(X, K)
1: for k = 1 to K do
2: µk ← some random location // randomly initialize mean for kth cluster
3: σ2

k ← 1 // initialize variances
4: θk ← 1/K // each cluster equally likely a priori
5: end for
6: repeat
7: for n = 1 to N do
8: for k = 1 to K do
9: zn,k ← θk

[
2πσ2

k
]− D

2 exp
[
− 1

2σ2
k
||xn − µk||

2
]

// compute

(unnormalized) fractional assignments
10: end for
11: zn ← 1

∑k zn,k
zn // normalize fractional assignments

12: end for
13: for k = 1 to K do
14: θk ← 1

N ∑n zn,k // re-estimate prior probability of cluster k
15: µk ←

∑n zn,k xn
∑n zn,k

// re-estimate mean of cluster k

16: σ2
k ←

∑n zn,k ||xn−µk ||
∑n zn,k

// re-estimate variance of cluster k
17: end for
18: until converged
19: return z // return cluster assignments

than full points. This gives the following re-estimation updates:

θk = fraction of training examples in class k (14.9)

=
1
N ∑

n
zn,k

µk = mean of fractional examples in class k (14.10)

=
∑n zn,kxn

∑n zn,k

σ2
k = variance of fractional examples in class k (14.11)

=
∑n zn,k ||xn − µk||

∑n zn,k

All that has happened here is that the hard assignments “[yn = k]”
have been replaced with soft assignments “zn,k”. As a bit of fore-
shadowing of what is to come, what we’ve done is essentially replace
known labels with expected labels, hence the name “expectation maxi-
mization.”

Putting this together yields Algorithm 14.1. This is the GMM
(“Gaussian Mixture Models”) algorithm, because the probabilitic
model being learned describes a dataset as being drawn from a mix-
ture distribution, where each component of this distribution is a
Gaussian. Aside from the fact that GMMs

use soft assignments and K-means
uses hard assignments, there are
other differences between the two
approaches. What are they?

?
Just as in the K-means algorithm, this approach is succeptible to

local optima and quality of initialization. The heuristics for comput-

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

174 a course in machine learning

ing better initializers for K-means are also useful here.

14.2 The Expectation Maximization Framework

At this point, you’ve seen a method for learning in a particular prob-
abilistic model with hidden variables. Two questions remain: (1) can
you apply this idea more generally and (2) why is it even a reason-
able thing to do? Expectation maximization is a family of algorithms
for performing maximum likelihood estimation in probabilistic mod-
els with hidden variables.

Figure 14.2: em:lowerbound: A figure
showing successive lower bounds

The general flavor of how we will proceed is as follows. We want
to maximize the log likelihood L, but this will turn out to be diffi-
cult to do directly. Instead, we’ll pick a surrogate function L̃ that’s a
lower bound on L (i.e., L̃ ≤ L everywhere) that’s (hopefully) easier
to maximize. We’ll construct the surrogate in such a way that increas-
ing it will force the true likelihood to also go up. After maximizing
L̃, we’ll construct a new lower bound and optimize that. This process
is shown pictorially in Figure 14.2.

To proceed, consider an arbitrary probabilistic model p(x, y | θ),
where x denotes the observed data, y denotes the hidden data and
θ denotes the parameters. In the case of Gaussian Mixture Models,
x was the data points, y was the (unknown) labels and θ included
the cluster prior probabilities, the cluster means and the cluster vari-
ances. Now, given access only to a number of examples x1, . . . , xN ,
you would like to estimate the parameters (θ) of the model.

Probabilistically, this means that some of the variables are un-
known and therefore you need to marginalize (or sum) over their
possible values. Now, your data consists only of X = 〈x1, x2, . . . , xN〉,
not the (x, y) pairs in D. You can then write the likelihood as:

p(X | θ) = ∑
y1

∑
y2

· · ·∑
yN

p(X, y1, y2, . . . yN | θ) marginalization

(14.12)

= ∑
y1

∑
y2

· · ·∑
yN

∏
n

p(xn, yn | θ) examples are independent

(14.13)

= ∏
n

∑
yn

p(xn, yn | θ) algebra

(14.14)

At this point, the natural thing to do is to take logs and then start
taking gradients. However, once you start taking logs, you run into a
problem: the log cannot eat the sum!

L(X | θ) = ∑
n

log ∑
yn

p(xn, yn | θ) (14.15)

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

expectation maximization 175

Namely, the log gets “stuck” outside the sum and cannot move in to
decompose the rest of the likelihood term!

The next step is to apply the somewhat strange, but strangely
useful, trick of multiplying by 1. In particular, let q(·) be an arbitrary
probability distribution. We will multiply the p(. . .) term above by
q(yn)/q(yn), a valid step so long as q is never zero. This leads to:

L(X | θ) = ∑
n

log ∑
yn

q(yn)
p(xn, yn | θ)

q(yn)
(14.16)

We will now construct a lower bound using Jensen’s inequality.
This is a very useful (and easy to prove!) result that states that
f (∑i λixi) ≥ ∑i λi f (xi), so long as (a) λi ≥ 0 for all i, (b) ∑i λi = 1,
and (c) f is concave. If this looks familiar, that’s just because it’s a
direct result of the definition of concavity. Recall that f is concave if
f (ax + by) ≥ a f (x) + b f (x) whenever a + b = 1. Prove Jensen’s inequality using the

definition of concavity and induc-
tion.

?You can now apply Jensen’s inequality to the log likelihood by
identifying the list of q(yn)s as the λs, log as f (which is, indeed,
concave) and each “x” as the p/q term. This yields:

L(X | θ) ≥∑
n

∑
yn

q(yn) log
p(xn, yn | θ)

q(yn)
(14.17)

= ∑
n

∑
yn

[
q(yn) log p(xn, yn | θ)− q(yn) log q(yn)

]
(14.18)

, L̃(X | θ) (14.19)

Note that this inequality holds for any choice of function q, so long as
its non-negative and sums to one. In particular, it needn’t even by the
same function q for each n. We will need to take advantage of both of
these properties.

We have succeeded in our first goal: constructing a lower bound
on L. When you go to optimize this lower bound for θ, the only part
that matters is the first term. The second term, q log q, drops out as a
function of θ. This means that the the maximization you need to be
able to compute, for fixed qns, is:

θ(new) ← arg max
θ

∑
n

∑
yn

qn(yn) log p(xn, yn | θ) (14.20)

This is exactly the sort of maximization done for Gaussian mixture
models when we recomputed new means, variances and cluster prior
probabilities.

The second question is: what should qn(·) actually be? Any rea-
sonable q will lead to a lower bound, so in order to choose one q over
another, we need another criterion. Recall that we are hoping to max-
imize L by instead maximizing a lower bound. In order to ensure
that an increase in the lower bound implies an increase in L, we need

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

176 a course in machine learning

to ensure that L(X | θ) = L̃(X | θ). In words: L̃ should be a lower
bound on L that makes contact at the current point, θ. This is shown
in Figure ??, including a case where the lower bound does not make
contact, and thereby does not guarantee an increase in L with an
increase in L̃.

14.3 EM versus Gradient Descent

computing gradients through marginals
step size

14.4 Dimensionality Reduction with Probabilistic PCA

derivation
advantages over pca

14.5 Exercises

Exercise 14.1. TODO. . .

	Expectation Maximization
	Clustering with a Mixture of Gaussians
	The Expectation Maximization Framework
	EM versus Gradient Descent
	Dimensionality Reduction with Probabilistic PCA
	Exercises

