
A Course in
Machine Learning

Hal Daumé III

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e
Copyright © 2012 Hal Daumé III

http://ciml.info

This book is for the use of anyone anywhere at no cost and with almost no re-
strictions whatsoever. You may copy it or re-use it under the terms of the CIML
License online at ciml.info/LICENSE. Youmay not redistribute it yourself, but are
encouraged to provide a link to the CIML web page for others to download for
free. You may not charge a fee for printed versions, though you can print it for
your own use.

version 0.8 , August 2012

http://ciml.info

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

13|UnsupervisedLearning

Dependencies:

If you have access to labeled training data, you know what
to do. This is the “supervised” setting, in which you have a teacher
telling you the right answers. Unfortunately, finding such a teacher
is often difficult, expensive, or down right impossible. In those cases,
you might still want to be able to analyze your data, even though you
do not have labels.

Unsupervised learning is learning without a teacher. One basic
thing that you might want to do with data is to visualize it. Sadly, it
is difficult to visualize things in more than two (or three) dimensions,
and most data is in hundreds of dimensions (or more). Dimension-
ality reduction is the problem of taking high dimensional data and
embedding it in a lower dimension space. Another thing you might
want to do is automatically derive a partitioning of the data into
clusters. You’ve already learned a basic approach for doing this: the
k-means algorithm (Chapter 2). Here you will analyze this algorithm
to see why it works. You will also learn more advanced clustering
approaches.

13.1 K-Means Clustering, Revisited

The K-means clustering algorithm is re-presented in Algorithm 13.1.
There are two very basic questions about this algorithm: (1) does it
converge (and if so, how quickly); (2) how sensitive it is to initializa-
tion? The answers to these questions, detailed below, are: (1) yes it
converges, and it converges very quickly in practice (though slowly
in theory); (2) yes it is sensitive to initialization, but there are good
ways to initialize it.

Consider the question of convergence. The following theorem
states that the K-Means algorithm converges, though it does not say
how quickly it happens. The method of proving the convergence is
to specify a clustering quality objective function, and then to show
that the K-Means algorithm converges to a (local) optimum of that
objective function. The particular objective function that K-Means
is optimizing is the sum of squared distances from any data point to its
assigned center. This is a natural generalization of the definition of a

Learning Objectives:
• Explain the difference between

linear and non-linear dimensionality
reduction.

• Relate the view of PCA as maximiz-
ing variance with the view of it as
minimizing reconstruction error.

• Implement latent semantic analysis
for text data.

• Motivate manifold learning from the
perspective of reconstruction error.

• Understand K-means clustering as
distance minimization.

• Explain the importance of initial-
ization in k-means and furthest-first
heuristic.

• Implement agglomerative clustering.

• Argue whether spectral cluster-
ing is a clustering algorithm or a
dimensionality reduction algorithm.

--

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

164 a course in machine learning

Algorithm 34 K-Means(D, K)
1: for k = 1 to K do
2: µk ← some random location // randomly initialize mean for kth cluster
3: end for
4: repeat
5: for n = 1 to N do
6: zn ← argmink ||µk − xn|| // assign example n to closest center
7: end for
8: for k = 1 to K do
9: µk ← mean({ xn : zn = k }) // re-estimate mean of cluster k

10: end for
11: until converged
12: return z // return cluster assignments

mean: the mean of a set of points is the single point that minimizes
the sum of squared distances from the mean to every point in the
data. Formally, the K-Means objective is:

L(z, µ; D) = ∑
n

∣∣∣∣∣∣xn − µzn

∣∣∣∣∣∣2 = ∑
k

∑
n:zn=k

||xn − µk||
2 (13.1)

Theorem 15 (K-Means Convergence Theorem). For any dataset D and
any number of clusters K, the K-means algorithm converges in a finite num-
ber of iterations, where convergence is measured by L ceasing the change.

Proof of Theorem 15. The proof works as follows. There are only two
points in which the K-means algorithm changes the values of µ or z:
lines 6 and 9. We will show that both of these operations can never
increase the value of L. Assuming this is true, the rest of the argu-
ment is as follows. After the first pass through the data, there are
are only finitely many possible assignments to z and µ, because z is
discrete and because µ can only take on a finite number of values:
means of some subset of the data. Furthermore, L is lower-bounded
by zero. Together, this means that L cannot decrease more than a
finite number of times. Thus, it must stop decreasing at some point,
and at that point the algorithm has converged.

It remains to show that lines 6 and 9 decrease L. For line 6, when
looking at example n, suppose that the previous value of zn is a and
the new value is b. It must be the case that ||xn − µb|| ≤ ||xn − µb||.
Thus, changing from a to b can only decrease L. For line 9, consider
the second form of L. Line 9 computes µk as the mean of the data
points for which zn = k, which is precisely the point that minimizes
squared sitances. Thus, this update to µk can only decrease L.

There are several aspects of K-means that are unfortunate. First,
the convergence is only to a local optimum of L. In practice, this
means that you should usually run it 10 times with different initial-
izations and pick the one with minimal resulting L. Second, one

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

unsupervised learning 165

can show that there are input datasets and initializations on which
it might take an exponential amount of time to converge. Fortu-
nately, these cases almost never happen in practice, and in fact it has
recently been shown that (roughly) if you limit the floating point pre-
cision of your machine, K-means will converge in polynomial time
(though still only to a local optimum), using techniques of smoothed
analysis.

The biggest practical issue in K-means is initialization. If the clus-
ter means are initialized poorly, you often get convergence to uninter-
esting solutions. A useful heuristic is the furthest-first heuristic. This
gives a way to perform a semi-random initialization that attempts to
pick initial means as far from each other as possible. The heuristic is
sketched below:

1. Pick a random example m and set µ1 = xm.

2. For k = 2 . . . K:

(a) Find the example m that is as far as possible from all previ-
ously selected means; namely: m = arg maxm mink′<k ||xm − µk′ ||

2

and set µk = xm

In this heuristic, the only bit of randomness is the selection of the
first data point. After that, it is completely deterministic (except in
the rare case that there are multiple equidistant points in step 2a). It
is extremely important that when selecting the 3rd mean, you select
that point that maximizes the minimum distance to the closest other
mean. You want the point that’s as far away from all previous means
as possible.

The furthest-first heuristic is just that: a heuristic. It works very
well in practice, though can be somewhat sensitive to outliers (which
will often get selected as some of the initial means). However, this
outlier sensitivity is usually reduced after one iteration through the
K-means algorithm. Despite being just a heuristic, it is quite useful in
practice.

You can turn the heuristic into an algorithm by adding a bit more
randomness. This is the idea of the K-means++ algorithm, which
is a simple randomized tweak on the furthest-first heuristic. The
idea is that when you select the kth mean, instead of choosing the
absolute furthest data point, you choose a data point at random, with
probability proportional to its distance squared. This is made formal
in Algorithm 13.1.

If you use K-means++ as an initialization for K-means, then you
are able to achieve an approximation guarantee on the final value
of the objective. This doesn’t tell you that you will reach the global
optimum, but it does tell you that you will get reasonably close. In

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

166 a course in machine learning

Algorithm 35 K-Means++(D, K)
1: µ1 ← xm for m chosen uniformly at random // randomly initialize first point
2: for k = 2 to K do
3: dn ← mink′<k ||xn − µk′ ||

2, ∀n // compute distances
4: p ← 1

∑n nd
d // normalize to probability distribution

5: m ← random sample from p // pick an example at random
6: µk ← xm
7: end for
8: run K-Means using µ as initial centers

particular, if L̂ is the value obtained by running K-means++, then this
will not be “too far” from L(opt), the true global minimum.

Theorem 16 (K-means++ Approximation Guarantee). The expected
value of the objective returned by K-means++ is never more than O(log K)
from optimal and can be as close as O(1) from optimal. Even in the former
case, with 2K random restarts, one restart will be O(1) from optimal (with
high probability). Formally: E

[
L̂
]
≤ 8(log K + 2)L(opt). Moreover, if the

data is “well suited” for clustering, then E
[
L̂
]
≤ O(1)L(opt).

The notion of “well suited” for clustering informally states that
the advantage of going from K − 1 clusters to K clusters is “large.”
Formally, it means that LK

(opt) ≤ ε2LK−1
(opt), where LK

(opt) is the
optimal value for clustering with K clusters, and ε is the desired
degree of approximation. The idea is that if this condition does not
hold, then you shouldn’t bother clustering the data.

One of the biggest practical issues with K-means clustering is
“choosing K.” Namely, if someone just hands you a dataset and
asks you to cluster it, how many clusters should you produce? This
is difficult, because increasing K will always decrease LK

(opt) (until
K > N), and so simply using L as a notion of goodness is insuffi-
cient (analogous to overfitting in a supervised setting). A number
of “information criteria” have been proposed to try to address this
problem. They all effectively boil down to “regularizing” K so that
the model cannot grow to be too complicated. The two most popular
are the Bayes Information Criteria (BIC) and the Akaike Information
Criteria (AIC), defined below in the context of K-means:

BIC: arg min
K
L̂K + K log D (13.2)

AIC: arg min
K
L̂K + 2KD (13.3)

The informal intuition behind these criteria is that increasing K is
going to make LK go down. However, if it doesn’t go down “by
enough” then it’s not worth doing. In the case of BIC, “by enough”
means by an amount proportional to log D; in the case of AIC, it’s

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

unsupervised learning 167

proportional to 2D. Thus, AIC provides a much stronger penalty for
many clusters than does BIC, especially in high dimensions.

A more formal intuition for BIC is the following. You ask yourself
the question “if I wanted to send this data across a network, how
many bits would I need to send?” Clearly you could simply send
all of the N examples, each of which would take roughly log D bits
to send. This gives N log D to send all the data. Alternatively, you
could first cluster the data and send the cluster centers. This will take
K log D bits. Then, for each data point, you send its center as well as
its deviation from that center. It turns out this will cost exactly L̂K

bits. Therefore, the BIC is precisely measuring how many bits it will
take to send your data using K clusters. The K that minimizes this
number of bits is the optimal value.

13.2 Linear Dimensionality Reduction

Dimensionality reduction is the task of taking a dataset in high di-
mensions (say 10000) and reducing it to low dimensions (say 2) while
retaining the “important” characteristics of the data. Since this is
an unsupervised setting, the notion of important characteristics is
difficult to define.

Consider the dataset in Figure ??, which lives in high dimensions
(two) and you want to reduce to low dimensions (one). In the case
of linear dimensionality reduction, the only thing you can do is to
project the data onto a vector and use the projected distances as the
embeddings. Figure ?? shows a projection of this data onto the vector
that points in the direction of maximal variance of the original dataset.
Intuitively, this is a reasonable notion of importance, since this is the
direction in which most information is encoded in the data.

For the rest of this section, assume that the data is centered:
namely, the mean of all the data is at the origin. (This will sim-
ply make the math easier.) Suppose the two dimensional data is
x1, . . . , xN and you’re looking for a vector u that points in the direc-
tion of maximal variance. You can compute this by projecting each
point onto u and looking at the variance of the result. In order for the
projection to make sense, you need to constrain ||u||2 = 1. In this
case, the projections are x1, u·, . . . , xN , u·. Call these values p1, . . . , pN .

The goal is to compute the variance of the {pn}s and then choose
u to maximize this variance. To compute the variance, you first need
to compute the mean. Because the mean of the xns was zero, the
mean of the ps is also zero. This can be seen as follows:

∑
n

pn = ∑
n

xn · u =

(
∑
n

xn

)
· u = 0 · u = 0 (13.4)

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

168 a course in machine learning

the usual...

MATH REVIEW | EIGENVALUES AND EIGENVECTORS

Figure 13.1:

The variance of the {pn} is then just ∑n p2
n. Finding the optimal

u (from the perspective of variance maximization) reduces to the
following optimization problem:

max
u ∑

n
(xn · u)2 subj. to ||u||2 = 1 (13.5)

In this problem it becomes apparent why keeping u unit length is
important: if not, u would simply stretch to have infinite length to
maximize the objective.

It is now helpful to write the collection of datapoints xn as a N×
D matrix X. If you take this matrix X and multiply it by u, which
has dimensions D×1, you end up with a N×1 vector whose values
are exactly the values p. The objective in Eq (13.5) is then just the
squared norm of p. This simplifies Eq (??) to:

max
u

||Xu||2 subj. to ||u||2 − 1 = 0 (13.6)

where the constraint has been rewritten to make it amenable to con-
structing the Lagrangian. Doing so and taking gradients yields:

L(u, λ) = ||Xu||2 − λ
(
||u||2 − 1

)
(13.7)

∇uL = 2X>Xu− 2λu (13.8)

=⇒ λu =
(

X>X
)

u (13.9)

You can solve this expression (λu = X>Xu) by computing the first
eigenvector and eigenvalue of the matrix X>X.

This gives you the solution to a projection into a one-dimensional
space. To get a second dimension, you want to find a new vector v on
which the data has maximal variance. However, to avoid redundancy,
you want v to be orthogonal to u; namely u · v = 0. This gives:

max
v

||Xv||2 subj. to ||v||2 = 1, and u · v = 0 (13.10)

Following the same procedure as before, you can construct a La-
grangian and differentiate:

L(v, λ1, λ2) = ||Xv||2 − λ1

(
||u||2 − 1

)
− λ2u · v (13.11)

∇uL = 2X>Xv− 2λ1v− 2λ2u (13.12)

=⇒ λ1v =
(

X>X
)

v− λ2u (13.13)

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

unsupervised learning 169

Algorithm 36 PCA(D, K)
1: µ ← mean(X) // compute data mean for centering

2: D←
(

X− µ1>
)
>
(

X− µ1>
)

// compute covariance, 1 is a vector of ones

3: {λk, uk} ← top K eigenvalues/eigenvectors of D
4: return (X− µ1)U // project data using U

However, you know that u is the first eigenvector of X>X, so the
solution to this problem for λ1 and v is given by the second eigen-
value/eigenvector pair of X>X.

Repeating this analysis inductively tells you that if you want to
project onto K mutually orthogonal dimensions, you simply need to
take the first K eigenvectors of the matrix X>X. This matrix is often
called the data covariance matrix because [X>X]i,j = ∑n ∑m xn,ixm,j,
which is the sample covariance between features i and j.

This leads to the technique of principle components analysis,
or PCA. For completeness, the is depicted in Algorithm ??. The
important thing to note is that the eigenanalysis only gives you
the projection directions. It does not give you the embedded data.
To embed a data point x you need to compute its embedding as
〈x · u1, x · u2, . . . , x · uK〉. If you write U for the D×K matrix of us, then
this is just XU.

There is an alternative derivation of PCA that can be informative,
based on reconstruction error. Consider the one-dimensional case
again, where you are looking for a single projection direction u. If
you were to use this direction, your projected data would be Z = Xu.
Each Zn gives the position of the nth datapoint along u. You can
project this one-dimensional data back into the original space by
multiplying it by u>. This gives you reconstructed values Zu>. Instead
of maximizing variance, you might instead want to minimize the
reconstruction error, defined by:

∣∣∣∣∣∣X− Zu>
∣∣∣∣∣∣2 =

∣∣∣∣∣∣X− Xuu>
∣∣∣∣∣∣2 definition of Z

(13.14)

= ||X||2 +
∣∣∣∣∣∣Xuu>

∣∣∣∣∣∣2 − 2X>Xuu> quadratic rule

(13.15)

= ||X||2 +
∣∣∣∣∣∣Xuu>

∣∣∣∣∣∣2 − 2u>X>Xu quadratic rule

(13.16)

= ||X||2 + ||X||2 − 2u>X>Xu u is a unit vector

(13.17)

= C− 2 ||Xu||2 join constants, rewrite last term

(13.18)

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

170 a course in machine learning

Minimizing this final term is equivalent to maximizing ||Xu||2, which
is exactly the form of the maximum variance derivation of PCA.
Thus, you can see that maximizing variance is identical to minimiz-
ing reconstruction error.

The same question of “what should K be” arises in dimension-
ality reduction as in clustering. If the purpose of dimensionality
reduction is to visualize, then K should be 2 or 3. However, an alter-
native purpose of dimensionality reduction is to avoid the curse of
dimensionality. For instance, even if you have labeled data, it might
be worthwhile to reduce the dimensionality before applying super-
vised learning, essentially as a form of regularization. In this case,
the question of an optimal K comes up again. In this case, the same
criteria (AIC and BIC) that can be used for clustering can be used for
PCA. The only difference is the quality measure changes from a sum
of squared distances to means (for clustering) to a sum of squared
distances to original data points (for PCA). In particular, for BIC you
get the reconstruction error plus K log D; for AIC, you get the recon-
struction error plus 2KD.

13.3 Manifolds and Graphs

what is a manifold?
graph construction

13.4 Non-linear Dimensionality Reduction

isomap
lle
mvu
mds?

13.5 Non-linear Clustering: Spectral Methods

what is a spectrum
spectral clustering

13.6 Exercises

Exercise 13.1. TODO. . .

	Unsupervised Learning
	K-Means Clustering, Revisited
	Linear Dimensionality Reduction
	Manifolds and Graphs
	Non-linear Dimensionality Reduction
	Non-linear Clustering: Spectral Methods
	Exercises

