
A Course in
Machine Learning

Hal Daumé III

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e
Copyright © 2012 Hal Daumé III

http://ciml.info

This book is for the use of anyone anywhere at no cost and with almost no re-
strictions whatsoever. You may copy it or re-use it under the terms of the CIML
License online at ciml.info/LICENSE. Youmay not redistribute it yourself, but are
encouraged to provide a link to the CIML web page for others to download for
free. You may not charge a fee for printed versions, though you can print it for
your own use.

version 0.8 , August 2012

http://ciml.info

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

12|EfficientLearning

Dependencies:

So far, our focus has been on models of learning and basic al-
gorithms for those models. We have not placed much emphasis on
how to learn quickly. The basic techniques you learned about so far
are enough to get learning algorithms running on tens or hundreds
of thousands of examples. But if you want to build an algorithm for
web page ranking, you will need to deal with millions or billions
of examples, in hundreds of thousands of dimensions. The basic
approaches you have seen so far are insufficient to achieve such a
massive scale.

In this chapter, you will learn some techniques for scaling learning
algorithms. This are useful even when you do not have billions of
training examples, because it’s always nice to have a program that
runs quickly. You will see techniques for speeding up both model
training and model prediction. The focus in this chapter is on linear
models (for simplicity), but most of what you will learn applies more
generally.

12.1 What Does it Mean to be Fast?

Everyone always wants fast algorithms. In the context of machine
learning, this can mean many things. You might want fast training
algorithms, or perhaps training algorithms that scale to very large
data sets (for instance, ones that will not fit in main memory). You
might want training algorithms that can be easily parallelized. Or,
you might not care about training efficiency, since it is an offline
process, and only care about how quickly your learned functions can
make classification decisions.

It is important to separate out these desires. If you care about
efficiency at training time, then what you are really asking for are
more efficient learning algorithms. On the other hand, if you care
about efficiency at test time, then you are asking for models that can
be quickly evaluated.

One issue that is not covered in this chapter is parallel learning.
This is largely because it is currently not a well-understood area in
machine learning. There are many aspects of parallelism that come

Learning Objectives:
• Understand and be able to imple-

ment stochastic gradient descent
algorithms.

• Compare and contrast small ver-
sus large batch sizes in stochastic
optimization.

• Derive subgradients for sparse
regularizers.

• Implement feature hashing.

--

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

efficient learning 157

into play, such as the speed of communication across the network,
whether you have shared memory, etc. Right now, this the general,
poor-man’s approach to parallelization, is to employ ensembles.

12.2 Stochastic Optimization

During training of most learning algorithms, you consider the entire
data set simultaneously. This is certainly true of gradient descent
algorithms for regularized linear classifiers (recall Algorithm 6.4), in
which you first compute a gradient over the entire training data (for
simplicity, consider the unbiased case):

g = ∑
n
∇w`(yn, w · xn) + λw (12.1)

where `(y, ŷ) is some loss function. Then you update the weights by
w ← w− ηg. In this algorithm, in order to make a single update, you
have to look at every training example.

When there are billions of training examples, it is a bit silly to look
at every one before doing anything. Perhaps just on the basis of the
first few examples, you can already start learning something!

Stochastic optimization involves thinking of your training data
as a big distribution over examples. A draw from this distribution
corresponds to picking some example (uniformly at random) from
your data set. Viewed this way, the optimization problem becomes a
stochastic optimization problem, because you are trying to optimize
some function (say, a regularized linear classifier) over a probability
distribution. You can derive this intepretation directly as follows:

w∗ = arg max
w ∑

n
`(yn, w · xn) + R(w) definition

(12.2)

= arg max
w ∑

n

[
`(yn, w · xn) +

1
N

R(w)

]
move R inside sum

(12.3)

= arg max
w ∑

n

[
1
N
`(yn, w · xn) +

1
N2 R(w)

]
divide through by N

(12.4)

= arg max
w

E(y,x)∼D

[
`(y, w · x) + 1

N
R(w)

]
write as expectation

(12.5)

where D is the training data distribution (12.6)

Given this framework, you have the following general form of an
optimization problem:

min
z

Eζ [F (z, ζ)] (12.7)

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

158 a course in machine learning

Algorithm 33 StochasticGradientDescent(F , D, S, K, η1, . . .)
1: z(0) ← 〈0, 0, . . . , 0〉 // initialize variable we are optimizing
2: for k = 1 . . . K do
3: D(k) ← S-many random data points from D
4: g(k) ← ∇zF (D(k))

∣∣
z(k-1) // compute gradient on sample

5: z(k) ← z(k-1) − η(k)g(k) // take a step down the gradient
6: end for
7: return z(K)

In the example, ζ denotes the random choice of examples over the
dataset, z denotes the weight vector and F (w, ζ) denotes the loss on
that example plus a fraction of the regularizer.

Stochastic optimization problems are formally harder than regu-
lar (deterministic) optimization problems because you do not even
get access to exact function values and gradients. The only access
you have to the function F that you wish to optimize are noisy mea-
surements, governed by the distribution over ζ. Despite this lack of
information, you can still run a gradient-based algorithm, where you
simply compute local gradients on a current sample of data.

More precisely, you can draw a data point at random from your
data set. This is analogous to drawing a single value ζ from its
distribution. You can compute the gradient of F just at that point.
In this case of a 2-norm regularized linear model, this is simply
g = ∇w`(y, w · x) + 1

N w, where (y, x) is the random point you
selected. Given this estimate of the gradient (it’s an estimate because
it’s based on a single random draw), you can take a small gradient
step w← w− ηg.

This is the stochastic gradient descent algorithm (SGD). In prac-
tice, taking gradients with respect to a single data point might be
too myopic. In such cases, it is useful to use a small batch of data.
Here, you can draw 10 random examples from the training data
and compute a small gradient (estimate) based on those examples:
g = ∑10

m=1∇w`(ym, w · xm) +
10
N w, where you need to include 10

counts of the regularizer. Popular batch sizes are 1 (single points)
and 10. The generic SGD algorithm is depicted in Algorithm 12.2,
which takes K-many steps over batches of S-many examples.

In stochastic gradient descent, it is imperative to choose good step
sizes. It is also very important that the steps get smaller over time at
a reasonable slow rate. In particular, convergence can be guaranteed
for learning rates of the form: η(k) = η0√

k
, where η0 is a fixed, initial

step size, typically 0.01, 0.1 or 1 depending on how quickly you ex-
pect the algorithm to converge. Unfortunately, in comparisong to
gradient descent, stochastic gradient is quite sensitive to the selection
of a good learning rate.

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

efficient learning 159

There is one more practical issues related to the use of SGD as a
learning algorithm: do you really select a random point (or subset
of random points) at each step, or do you stream through the data
in order. The answer is akin to the answer of the same question for
the perceptron algorithm (Chapter 3). If you do not permute your
data at all, very bad things can happen. If you do permute your data
once and then do multiple passes over that same permutation, it
will converge, but more slowly. In theory, you really should permute
every iteration. If your data is small enough to fit in memory, this
is not a big deal: you will only pay for cache misses. However, if
your data is too large for memory and resides on a magnetic disk
that has a slow seek time, randomly seeking to new data points for
each example is prohibitivly slow, and you will likely need to forgo
permuting the data. The speed hit in convergence speed will almost
certainly be recovered by the speed gain in not having to seek on disk
routinely. (Note that the story is very different for solid state disks,
on which random accesses really are quite efficient.)

12.3 Sparse Regularization

For many learning algorithms, the test-time efficiency is governed
by how many features are used for prediction. This is one reason de-
cision trees tend to be among the fastest predictors: they only use a
small number of features. Especially in cases where the actual com-
putation of these features is expensive, cutting down on the number
that are used at test time can yield huge gains in efficiency. Moreover,
the amount of memory used to make predictions is also typically
governed by the number of features. (Note: this is not true of kernel
methods like support vector machines, in which the dominant cost is
the number of support vectors.) Furthermore, you may simply believe
that your learning problem can be solved with a very small number
of features: this is a very reasonable form of inductive bias.

This is the idea behind sparse models, and in particular, sparse
regularizers. One of the disadvantages of a 2-norm regularizer for
linear models is that they tend to never produce weights that are
exactly zero. They get close to zero, but never hit it. To understand
why, as a weight wd approaches zero, its gradient also approaches
zero. Thus, even if the weight should be zero, it will essentially never
get there because of the constantly shrinking gradient.

This suggests that an alternative regularizer is required to yield a
sparse inductive bias. An ideal case would be the zero-norm regular-
izer, which simply counts the number of non-zero values in a vector:
||w||0 = ∑d[wd 6= 0]. If you could minimize this regularizer, you
would be explicitly minimizing the number of non-zero features. Un-

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

160 a course in machine learning

fortunately, not only is the zero-norm non-convex, it’s also discrete.
Optimizing it is NP-hard.

A reasonable middle-ground is the one-norm: ||w||1 = ∑d |wd|.
It is indeed convex: in fact, it is the tighest `p norm that is convex.
Moreover, its gradients do not go to zero as in the two-norm. Just as
hinge-loss is the tightest convex upper bound on zero-one error, the
one-norm is the tighest convex upper bound on the zero-norm.

At this point, you should be content. You can take your subgradi-
ent optimizer for arbitrary functions and plug in the one-norm as a
regularizer. The one-norm is surely non-differentiable at wd = 0, but
you can simply choose any value in the range [−1,+1] as a subgradi-
ent at that point. (You should choose zero.)

Unfortunately, this does not quite work the way you might expect.
The issue is that the gradient might “overstep” zero and you will
never end up with a solution that is particularly sparse. For example,
at the end of one gradient step, you might have w3 = 0.6. Your
gradient might have g6 = 0.8 and your gradient step (assuming
η = 1) will update so that the new w3 = −0.2. In the subsequent
iteration, you might have g6 = −0.3 and step to w3 = 0.1.

This observation leads to the idea of trucated gradients. The idea
is simple: if you have a gradient that would step you over wd = 0,
then just set wd = 0. In the easy case when the learning rate is 1, this
means that if the sign of wd − gd is different than the sign of wd then
you truncate the gradient step and simply set wd = 0. In other words,
gd should never be larger than wd Once you incorporate learning
rates, you can express this as:

gd ←


gd if wd > 0 and gd ≤ 1

η(k) wd

gd if wd < 0 and gd ≥ 1
η(k) wd

0 otherwise

(12.8)

This works quite well in the case of subgradient descent. It works
somewhat less well in the case of stochastic subgradient descent. The
problem that arises in the stochastic case is that wherever you choose
to stop optimizing, you will have just touched a single example (or
small batch of examples), which will increase the weights for a lot of
features, before the regularizer “has time” to shrink them back down
to zero. You will still end up with somewhat sparse solutions, but not
as sparse as they could be. There are algorithms for dealing with this
situation, but they all have a heuristic flavor to them and are beyond
the scope of this book.

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

efficient learning 161

12.4 Feature Hashing

As much as speed is a bottleneck in prediction, so often is memory
usage. If you have a very large number of features, the amount of
memory that it takes to store weights for all of them can become
prohibitive, especially if you wish to run your algorithm on small de-
vices. Feature hashing is an incredibly simple technique for reducing
the memory footprint of linear models, with very small sacrifices in
accuracy.

The basic idea is to replace all of your features with hashed ver-
sions of those features, thus reducing your space from D-many fea-
ture weights to P-many feature weights, where P is the range of
the hash function. You can actually think of hashing as a (random-
ized) feature mapping φ : RD → RP, for some P � D. The idea
is as follows. First, you choose a hash function h whose domain is
[D] = {1, 2, . . . , D} and whose range is [P]. Then, when you receive a
feature vector x ∈ RD, you map it to a shorter feature vector x̂ ∈ RP.
Algorithmically, you can think of this mapping as follows:

1. Initialize x̂ = 〈0, 0, . . . , 0〉

2. For each d = 1 . . . D:

(a) Hash d to position p = h(d)

(b) Update the pth position by adding xd: x̂p ← x̂p + xd

3. Return x̂

Mathematically, the mapping looks like:

φ(x)p = ∑
d
[h(d) = p]xd = ∑

d∈h−1(p)

xd (12.9)

where h−1(p) = {d : h(d) = p}.
In the (unrealistic) case where P = D and h simply encodes a per-

mutation, then this mapping does not change the learning problem
at all. All it does is rename all of the features. In practice, P � D
and there will be collisions. In this context, a collision means that
two features, which are really different, end up looking the same to
the learning algorithm. For instance, “is it sunny today?” and “did
my favorite sports team win last night?” might get mapped to the
same location after hashing. The hope is that the learning algorithm
is sufficiently robust to noise that it can handle this case well.

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

162 a course in machine learning

Consider the kernel defined by this hash mapping. Namely:

K(hash)(x, z) = φ(x) · φ(z) (12.10)

= ∑
p

(
∑
d
[h(d) = p]xd

)(
∑
d
[h(d) = p]zd

)
(12.11)

= ∑
p

∑
d,e
[h(d) = p][h(e) = p]xdze (12.12)

= ∑
d

∑
e∈h−1(h(d))

xdze (12.13)

= x · z + ∑
d

∑
e 6=d,

e∈h−1(h(d))

xdze (12.14)

This hash kernel has the form of a linear kernel plus a small number
of quadratic terms. The particular quadratic terms are exactly those
given by collisions of the hash function.

There are two things to notice about this. The first is that collisions
might not actually be bad things! In a sense, they’re giving you a
little extra representational power. In particular, if the hash function
happens to select out feature pairs that benefit from being paired,
then you now have a better representation. The second is that even if
this doesn’t happen, the quadratic term in the kernel has only a small
effect on the overall prediction. In particular, if you assume that your
hash function is pairwise independent (a common assumption of
hash functions), then the expected value of this quadratic term is zero,
and its variance decreases at a rate of O(P−2). In other words, if you
choose P ≈ 100, then the variance is on the order of 0.0001.

12.5 Exercises

Exercise 12.1. TODO. . .

	Efficient Learning
	What Does it Mean to be Fast?
	Stochastic Optimization
	Sparse Regularization
	Feature Hashing
	Exercises

