
A Course in
Machine Learning

Hal Daumé III

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e
Copyright © 2012 Hal Daumé III

http://ciml.info

This book is for the use of anyone anywhere at no cost and with almost no re-
strictions whatsoever. You may copy it or re-use it under the terms of the CIML
License online at ciml.info/LICENSE. Youmay not redistribute it yourself, but are
encouraged to provide a link to the CIML web page for others to download for
free. You may not charge a fee for printed versions, though you can print it for
your own use.

version 0.8 , August 2012

http://ciml.info

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

11|EnsembleMethods

Dependencies:

Groups of people can often make better decisions than
individuals, especially when group members each come in with
their own biases. The same is true in machine learning. Ensemble
methods are learning models that achieve performance by combining
the opinions of multiple learners. In doing so, you can often get away
with using much simpler learners and still achieve great performance.
Moreover, ensembles are inherantly parallel, which can make them
much more efficient at training and test time, if you have access to
multiple processors.

In this chapter, you will learn about various ways of combining
base learners into ensembles. One of the shocking results we will
see is that you can take a learning model that only ever does slightly
better than chance, and turn it into an arbitrarily good learning
model, though a technique known as boosting. You will also learn
how ensembles can decrease the variance of predictors as well as
perform regularization.

11.1 Voting Multiple Classifiers

All of the learning algorithms you have seen so far are deterministic.
If you train a decision tree multiple times on the same data set, you
will always get the same tree back. In order to get an effect out of
voting multiple classifiers, they need to differ. There are two primary
ways to get variability. You can either change the learning algorithm
or change the data set.

Building an emsemble by training different classifiers is the most
straightforward approach. As in single-model learning, you are given
a data set (say, for classification). Instead of learning a single classi-
fier (eg., a decision tree) on this data set, you learn multiple different
classifiers. For instance, you might train a decision tree, a perceptron,
a KNN, and multiple neural networks with different architectures.
Call these classifiers f1, . . . , fM. At test time, you can make a predic-
tion by voting. On a test example x̂, you compute ŷ1 = f1(x̂), . . . ,
ŷM = fM(x̂). If there are more +1s in the list 〈y1, . . . , yM then you
predict +1; otherwise you predict −1.

Learning Objectives:
• Implement bagging and explain how

it reduces variance in a predictor.

• Explain the difference between a
weak learner and a strong learner.

• Derive the AdaBoost algorithm.

• Understand the relationship between
boosting decision stumps and linear
classification.

--

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

150 a course in machine learning

The main advantage of ensembles of different classifiers is that it
is unlikely that all classifiers will make the same mistake. In fact, as
long as every error is made by a minority of the classifiers, you will
achieve optimal classification! Unfortunately, the inductive biases of
different learning algorithms are highly correlated. This means that
different algorithms are prone to similar types of errors. In particular,
ensembles tend to reduce the variance of classifiers. So if you have
a classification algorithm that tends to be very sensitive to small
changes in the training data, ensembles are likely to be useful. Which of the classifiers you’ve

learned about so far have high
variance?

?Note that the voting scheme naturally extends to multiclass clas-
sification. However, it does not make sense in the contexts of regres-
sion, ranking or collective classification. This is because you will
rarely see the same exact output predicted twice by two different
regression models (or ranking models or collective classification mod-
els). For regression, a simple solution is to take the mean or median
prediction from the different models. For ranking and collective clas-
sification, different approaches are required.

Instead of training different types of classifiers on the same data
set, you can train a single type of classifier (eg., decision tree) on
multiple data sets. The question is: where do these multiple data sets
come from, since you’re only given one at training time?

One option is to fragment your original data set. For instance, you
could break it into 10 pieces and build decision trees on each of these
pieces individually. Unfortunately, this means that each decision tree
is trained on only a very small part of the entire data set and is likely
to perform poorly.

Figure 11.1: picture of sampling with
replacement

A better solution is to use bootstrap resampling. This is a tech-
nique from the statistics literature based on the following observa-
tion. The data set we are given, D, is a sample drawn i.i.d. from an
unknown distribution D. If we draw a new data set D̃ by random
sampling from D with replacement1, then D̃ is also a sample from D.

1 To sample with replacement, imagine
putting all items from D in a hat. To
draw a single sample, pick an element
at random from that hat, write it down,
and then put it back.

Figure 11.1 shows the process of bootstrap resampling of ten objects.
Applying this idea to ensemble methods yields a technique known

as bagging. You start with a single data set D that contains N train-
ing examples. From this single data set, you create M-many “boot-
strapped training sets” D̃1, . . . D̃M. Each of these bootstrapped sets
also contains N training examples, drawn randomly from D with
replacement. You can then train a decision tree (or other model)
seperately on each of these data sets to obtain classifiers f1, . . . , fM.
As before, you can use these classifiers to vote on new test points.

Note that the bootstrapped data sets will be similar. However, they
will not be too similar. For example, if N is large then the number of
examples that are not present in any particular bootstrapped sample
is relatively large. The probability that the first training example is

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

ensemble methods 151

not selected once is (1− 1/N). The probability that it is not selected
at all is (1− 1/N)N . As N → ∞, this tends to 1/e ≈ 0.3679. (Already
for N = 1000 this is correct to four decimal points.) So only about
63% of the original training examples will be represented in any
given bootstrapped set.

Figure 11.2: graph depicting overfitting
using regularization versus bagging

Since bagging tends to reduce variance, it provides an alternative
approach to regularization. That is, even if each of the learned clas-
sifiers f1, . . . , fM are individually overfit, they are likely to be overfit
to different things. Through voting, you are able to overcome a sig-
nificant portion of this overfitting. Figure ?? shows this effect by
comparing regularization via hyperparameters to regularization via
bagging.

11.2 Boosting Weak Learners

Boosting is the process of taking a crummy learning algorithm (tech-
nically called a weak learner) and turning it into a great learning
algorithm (technically, a strong learner). Of all the ideas that origi-
nated in the theoretical machine learning community, boosting has
had—perhaps—the greatest practical impact. The idea of boosting
is reminiscent of what you (like me!) might have thought when you
first learned about file compression. If I compress a file, and then
re-compress it, and then re-compress it, eventually I’ll end up with a
final that’s only one byte in size!

To be more formal, let’s define a strong learning algorithm L as
follows. When given a desired error rate ε, a failure probability δ

and access to “enough” labeled examples from some distribution D,
then, with high probability (at least 1− δ), L learns a classifier f that
has error at most ε. This is precisely the definition of PAC learning
that you learned about in Chapter 10. Building a strong learning
algorithm might be difficult. We can as if, instead, it is possible to
build a weak learning algorithmW that only has to achieve an error
rate of 49%, rather than some arbitrary user-defined parameter ε.
(49% is arbitrary: anything strictly less than 50% would be fine.)

Boosting is more of a “framework” than an algorithm. It’s a frame-
work for taking a weak learning algorithmW and turning it into a
strong learning algorithm. The particular boosting algorithm dis-
cussed here is AdaBoost, short for “adaptive boosting algorithm.”
AdaBoost is famous because it was one of the first practical boosting
algorithms: it runs in polynomial time and does not require you to
define a large number of hyperparameters. It gets its name from the
latter benefit: it automatically adapts to the data that you give it.

The intuition behind AdaBoost is like studying for an exam by
using a past exam. You take the past exam and grade yourself. The

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

152 a course in machine learning

Algorithm 31 AdaBoost(W , D, K)
1: d(0) ← 〈 1

N , 1
N , . . . , 1

N 〉 // Initialize uniform importance to each example
2: for k = 1 . . . K do
3: f (k) ← W(D, d(k-1)) // Train kth classifier on weighted data
4: ŷn ← f (k)(xn), ∀n // Make predictions on training data
5: ε̂(k) ← ∑n d(k-1)

n [yn 6= ŷn] // Compute weighted training error

6: α(k) ← 1
2 log

(
1−ε̂(k)

ε̂(k)

)
// Compute “adaptive” parameter

7: d(k)
n ← 1

Z d(k-1)
n exp[−α(k)yn ŷn], ∀n // Re-weight examples and normalize

8: end for
9: return f (x̂) = sgn

[
∑k α(k) f (k)(x̂)

]
// Return (weighted) voted classifier

questions that you got right, you pay less attention to. Those that you
got wrong, you study more. Then you take the exam again and repeat
this process. You continually down-weight the importance of questions
you routinely answer correctly and up-weight the importance of ques-
tions you routinely answer incorrectly. After going over the exam
multiple times, you hope to have mastered everything.

The precise AdaBoost training algorithm is shown in Algorithm 11.2.
The basic functioning of the algorithm is to maintain a weight dis-
tribution d, over data points. A weak learner, f (k) is trained on this
weighted data. (Note that we implicitly assume that our weak learner
can accept weighted training data, a relatively mild assumption that
is nearly always true.) The (weighted) error rate of f (k) is used to de-
termine the adaptive parameter α, which controls how “important” f (k)

is. As long as the weak learner does, indeed, achieve < 50% error,
then α will be greater than zero. As the error drops to zero, α grows
without bound. What happens if the weak learn-

ing assumption is violated and ε̂ is
equal to 50%? What if it is worse
than 50%? What does this mean, in
practice?

?
After the adaptive parameter is computed, the weight distibution

is updated for the next iteration. As desired, examples that are cor-
rectly classified (for which ynŷn = +1) have their weight decreased
multiplicatively. Examples that are incorrectly classified (ynŷn = −1)
have their weight increased multiplicatively. The Z term is a nom-
ralization constant to ensure that the sum of d is one (i.e., d can be
interpreted as a distribution). The final classifier returned by Ad-
aBoost is a weighted vote of the individual classifiers, with weights
given by the adaptive parameters.

To better understand why α is defined as it is, suppose that our
weak learner simply returns a constant function that returns the
(weighted) majority class. So if the total weight of positive exam-
ples exceeds that of negative examples, f (x) = +1 for all x; otherwise
f (x) = −1 for all x. To make the problem moderately interesting,
suppose that in the original training set, there are 80 positive ex-
amples and 20 negative examples. In this case, f (1)(x) = +1. It’s
weighted error rate will be ε̂(1) = 0.2 because it gets every negative

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

ensemble methods 153

example wrong. Computing, we get α(1) = 1
2 log 4. Before normaliza-

tion, we get the new weight for each positive (correct) example to be
1 exp[− 1

2 log 4] = 1
2 . The weight for each negative (incorrect) example

becomes 1 exp[1
2 log 4] = 2. We can compute Z = 80×1

2 + 20×2 = 80.
Therefore, after normalization, the weight distribution on any single
positive example is 1

160 and the weight on any negative example is 1
40 .

However, since there are 80 positive examples and 20 negative exam-
ples, the cumulative weight on all positive examples is 80× 1

160 = 1
2 ;

the cumulative weight on all negative examples is 20× 1
40 = 1

2 . Thus,
after a single boosting iteration, the data has become precisely evenly
weighted. This guarantees that in the next iteration, our weak learner
must do something more interesting than majority voting if it is to
achieve an error rate less than 50%, as required. This example uses concrete num-

bers, but the same result holds no
matter what the data distribution
looks like nor how many examples
there are. Write out the general case
to see that you will still arrive at an
even weighting after one iteration.

?

Figure 11.3: perf comparison of depth
vs # boost

One of the major attractions of boosting is that it is perhaps easy
to design computationally efficient weak learners. A very popular
type of weak learner is a shallow decision tree: a decision tree with a
small depth limit. Figure 11.3 shows test error rates for decision trees
of different maximum depths (the different curves) run for differing
numbers of boosting iterations (the x-axis). As you can see, if you
are willing to boost for many iterations, very shallow trees are quite
effective.

In fact, a very popular weak learner is a decision decision stump:
a decision tree that can only ask one question. This may seem like a
silly model (and, in fact, it is on it’s own), but when combined with
boosting, it becomes very effective. To understand why, suppose for
a moment that our data consists only of binary features, so that any
question that a decision tree might ask is of the form “is feature 5

on?” By concentrating on decision stumps, all weak functions must
have the form f (x) = s(2xd − 1), where s ∈ {±1} and d indexes some
feature.

Why do the functions have this
form??

Now, consider the final form of a function learned by AdaBoost.
We can expand it as follow, where we let fk denote the single feature
selected by the kth decision stump and let sk denote its sign:

f (x) = sgn

[
∑
k

αk f (k)(x)

]
(11.1)

= sgn

[
∑
k

αksk(2x fk
− 1)

]
(11.2)

= sgn

[
∑
k

2αkskx fk
−∑

k
αksk

]
(11.3)

= sgn [w · x + b] (11.4)

where wd = ∑
k: fk=d

2αksk and b = −∑
k

αksk (11.5)

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

154 a course in machine learning

Algorithm 32 RandomForestTrain(D, depth, K)
1: for k = 1 . . . K do
2: t(k) ← complete binary tree of depth depth with random feature splits
3: f (k) ← the function computed by t(k), with leaves filled in by D
4: end for
5: return f (x̂) = sgn

[
∑k f (k)(x̂)

]
// Return voted classifier

Thus, when working with decision stumps, AdaBoost actually pro-
vides an algorithm for learning linear classifiers! In fact, this con-
nection has recently been strengthened: you can show that AdaBoost
provides an algorithm for optimizing exponential loss. (However,
this connection is beyond the scope of this book.)

As a further example, consider the case of boosting a linear classi-
fier. In this case, if we let the kth weak classifier be parameterized by
w(k) and b(k), the overall predictor will have the form:

f (x) = sgn

[
∑
k

αksgn
(

w(k) · x + b(k)
)]

(11.6)

You can notice that this is nothing but a two-layer neural network,
with K-many hidden units! Of course it’s not a classifically trained
neural network (once you learn w(k) you never go back and update
it), but the structure is identical.

11.3 Random Ensembles

One of the most computationally expensive aspects of ensembles of
decision trees is training the decision trees. This is very fast for de-
cision stumps, but for deeper trees it can be prohibitively expensive.
The expensive part is choosing the tree structure. Once the tree struc-
ture is chosen, it is very cheap to fill in the leaves (i.e., the predictions
of the trees) using the training data.

An efficient and surprisingly effective alternative is to use trees
with fixed structures and random features. Collections of trees are
called forests, and so classifiers built like this are called random
forests. The random forest training algorithm, shown in Algo-
rithm 11.3 is quite short. It takes three arguments: the data, a desired
depth of the decision trees, and a number K of total decision trees to
build.

The algorithm generates each of the K trees independently, which
makes it very easy to parallelize. For each trees, it constructs a full
binary tree of depth depth. The features used at the branches of this
tree are selected randomly, typically with replacement, meaning that
the same feature can appear multiple times, even in one branch. The
leaves of this tree, where predictions are made, are filled in based on

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

ensemble methods 155

the training data. This last step is the only point at which the training
data is used. The resulting classifier is then just a voting of the K-
many random trees.

The most amazing thing about this approach is that it actually
works remarkably well. It tends to work best when all of the features
are at least marginally relevant, since the number of features selected
for any given tree is small. An intuitive reason that it works well
is the following. Some of the trees will query on useless features.
These trees will essentially make random predictions. But some
of the trees will happen to query on good features and will make
good predictions (because the leaves are estimated based on the
training data). If you have enough trees, the random ones will wash
out as noise, and only the good trees will have an effect on the final
classification.

11.4 Exercises

Exercise 11.1. TODO. . .

	Ensemble Methods
	Voting Multiple Classifiers
	Boosting Weak Learners
	Random Ensembles
	Exercises

