
A Course in
Machine Learning

Hal Daumé III

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e
Copyright © 2012 Hal Daumé III

http://ciml.info

This book is for the use of anyone anywhere at no cost and with almost no re-
strictions whatsoever. You may copy it or re-use it under the terms of the CIML
License online at ciml.info/LICENSE. Youmay not redistribute it yourself, but are
encouraged to provide a link to the CIML web page for others to download for
free. You may not charge a fee for printed versions, though you can print it for
your own use.

version 0.8 , August 2012

http://ciml.info

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

5|BeyondBinaryClassification

Dependencies:

In the preceeding chapters, you have learned all about a very
simple form of prediction: predicting bits. In the real world, however,
we often need to predict much more complex objects. You may need
to categorize a document into one of several categories: sports, en-
tertainment, news, politics, etc. You may need to rank web pages or
ads based on relevance to a query. You may need to simultaneously
classify a collection of objects, such as web pages, that have important
information in the links between them. These problems are all com-
monly encountered, yet fundamentally more complex than binary
classification.

In this chapter, you will learn how to use everything you already
know about binary classification to solve these more complicated
problems. You will see that it’s relatively easy to think of a binary
classifier as a black box, which you can reuse for solving these more
complex problems. This is a very useful abstraction, since it allows us
to reuse knowledge, rather than having to build new learning models
and algorithms from scratch.

5.1 Learning with Imbalanced Data

Your boss tells you to build a classifier that can identify fraudulent
transactions in credit card histories. Fortunately, most transactions
are legitimate, so perhaps only 0.1% of the data is a positive in-
stance. The imbalanced data problem refers to the fact that for a
large number of real world problems, the number of positive exam-
ples is dwarfed by the number of negative examples (or vice versa).
This is actually something of a misnomer: it is not the data that is
imbalanced, but the distribution from which the data is drawn. (And
since the distribution is imbalanced, so must the data be.)

Imbalanced data is a problem because machine learning algo-
rithms are too smart for your own good. For most learning algo-
rithms, if you give them data that is 99.9% negative and 0.1% posi-
tive, they will simply learn to always predict negative. Why? Because
they are trying to minimize error, and they can achieve 0.1% error by
doing nothing! If a teacher told you to study for an exam with 1000

Learning Objectives:
• Represent complex prediction prob-

lems in a formal learning setting.

• Be able to artifically “balance”
imbalanced data.

• Understand the positive and neg-
ative aspects of several reductions
from multiclass classification to
binary classification.

• Recognize the difference between
regression and ordinal regression.

• Implement stacking as a method of
collective classification.

--

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

beyond binary classification 69

true/false questions and only one of them is true, it is unlikely you
will study very long.

Really, the problem is not with the data, but rather with the way
that you have defined the learning problem. That is to say, what you
care about is not accuracy: you care about something else. If you
want a learning algorithm to do a reasonable job, you have to tell it
what you want!

Most likely, what you want is not to optimize accuracy, but rather
to optimize some other measure, like f-score or AUC. You want your
algorithm to make some positive predictions, and simply prefer those
to be “good.” We will shortly discuss two heuristics for dealing with
this problem: subsampling and weighting. In subsampling, you throw
out some of you negative examples so that you are left with a bal-
anced data set (50% positive, 50% negative). This might scare you
a bit since throwing out data seems like a bad idea, but at least it
makes learning much more efficient. In weighting, instead of throw-
ing out positive examples, we just given them lower weight. If you
assign an importance weight of 0.00101 to each of the positive ex-
amples, then there will be as much weight associated with positive
examples as negative examples.

Before formally defining these heuristics, we need to have a mech-
anism for formally defining supervised learning problems. We will
proceed by example, using binary classification as the canonical
learning problem.

Given:

1. An input space X

2. An unknown distribution D over X×{−1,+1}

Compute: A function f minimizing: E(x,y)∼D
[

f (x) 6= y
]

TASK: BINARY CLASSIFICATION

As in all the binary classification examples you’ve seen, you have
some input space (which has always been RD). There is some distri-
bution that produces labeled examples over the input space. You do
not have access to that distribution, but can obtain samples from it.
Your goal is to find a classifier that minimizes error on that distribu-
tion.

A small modification on this definition gives a α-weighted classifi-
cation problem, where you believe that the positive class is α-times as
important as the negative class.

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

70 a course in machine learning

Algorithm 11 SubsampleMap(Dweighted, α)
1: while true do
2: (x, y) ∼ Dweighted // draw an example from the weighted distribution
3: u ∼ uniform random variable in [0, 1]
4: if y = +1 or u < 1

α then
5: return (x, y)
6: end if
7: end while

Given:

1. An input space X

2. An unknown distribution D over X×{−1,+1}

Compute: A function f minimizing: E(x,y)∼D

[
αy=1[f (x) 6= y

]]

TASK: α-WEIGHTED BINARY CLASSIFICATION

The objects given to you in weighted binary classification are iden-
tical to standard binary classification. The only difference is that the
cost of misprediction for y = +1 is α, while the cost of misprediction
for y = −1 is 1. In what follows, we assume that α > 1. If it is not,
you can simply swap the labels and use 1/α.

The question we will ask is: suppose that I have a good algorithm
for solving the BINARY CLASSIFICATION problem. Can I turn that into
a good algorithm for solving the α-WEIGHTED BINARY CLASSIFICATION

problem?
In order to do this, you need to define a transformation that maps

a concrete weighted problem into a concrete unweighted problem.
This transformation needs to happen both at training time and at test
time (though it need not be the same transformation!). Algorithm ??
sketches a training-time sub-sampling transformation and Algo-
rithm ?? sketches a test-time transformation (which, in this case, is
trivial). All the training algorithm is doing is retaining all positive ex-
amples and a 1/α fraction of all negative examples. The algorithm is
explicitly turning the distribution over weighted examples into a (dif-
ferent) distribution over binary examples. A vanilla binary classifier
is trained on this induced distribution.

Aside from the fact that this algorithm throws out a lot of data
(especially for large α), it does seem to be doing a reasonable thing.
In fact, from a reductions perspective, it is an optimal algorithm. You
can prove the following result:

Theorem 2 (Subsampling Optimality). Suppose the binary classifier

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

beyond binary classification 71

trained in Algorithm ?? achieves a binary error rate of ε. Then the error rate
of the weighted predictor is equal to αε.

This theorem states that if your binary classifier does well (on the
induced distribution), then the learned predictor will also do well
(on the original distribution). Thus, we have successfully converted
a weighted learning problem into a plain classification problem! The
fact that the error rate of the weighted predictor is exactly α times
more than that of the unweighted predictor is unavoidable: the error
metric on which it is evaluated is α times bigger! Why is it unreasonable to expect

to be able to achieve, for instance,
an error of

√
αε, or anything that is

sublinear in α?

?The proof of this theorem is so straightforward that we will prove
it here. It simply involves some algebra on expected values.

Proof of Theorem ??. Let Dw be the original distribution and let Db be
the induced distribution. Let f be the binary classifier trained on data
from Db that achieves a binary error rate of εb on that distribution.
We will compute the expected error εw of f on the weighted problem:

εw = E(x,y)∼Dw

[
αy=1[f (x) 6= y

]]
(5.1)

= ∑
x∈X

∑
y∈±1

Dw(x, y)αy=1[f (x) 6= y
]

(5.2)

= α ∑
x∈X

(
Dw(x,+1)

[
f (x) 6= +1

]
+Dw(x,−1)

1
α

[
f (x) 6= −1

])
(5.3)

= α ∑
x∈X

(
Db(x,+1)

[
f (x) 6= +1

]
+Db(x,−1)

[
f (x) 6= −1

])
(5.4)

= αE(x,y)∼Db
[

f (x) 6= y
]

(5.5)

= αεb (5.6)

And we’re done! (We implicitly assumed X is discrete. In the case
of continuous data, you need to replace all the sums over x with
integrals over x, but the result still holds.)

Instead of subsampling the low-cost class, you could alternatively
oversample the high-cost class. The easiest case is when α is an in-
teger, say 5. Now, whenever you get a positive point, you include 5
copies of it in the induced distribution. Whenever you get a negative
point, you include a single copy. How can you handle non-integral α,

for instance 5.5??This oversampling algorithm achieves exactly the same theoretical
result as the subsampling algorithm. The main advantage to the over-
sampling algorithm is that it does not throw out any data. The main
advantage to the subsampling algorithm is that it is more computa-
tionally efficient.

Modify the proof of optimality
for the subsampling algorithm so
that it applies to the oversampling
algorithm.

?

You might be asking yourself: intuitively, the oversampling algo-
rithm seems like a much better idea than the subsampling algorithm,

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

72 a course in machine learning

at least if you don’t care about computational efficiency. But the the-
ory tells us that they are the same! What is going on? Of course the
theory isn’t wrong. It’s just that the assumptions are effectively dif-
ferent in the two cases. Both theorems state that if you can get error
of ε on the binary problem, you automatically get error of αε on the
weighted problem. But they do not say anything about how possible
it is to get error ε on the binary problem. Since the oversampling al-
gorithm produces more data points than the subsampling algorithm
it is very concievable that you could get lower binary error with over-
sampling than subsampling.

The primary drawback to oversampling is computational ineffi-
ciency. However, for many learning algorithms, it is straightforward
to include weighted copies of data points at no cost. The idea is to
store only the unique data points and maintain a counter saying how
many times they are replicated. This is not easy to do for the percep-
tron (it can be done, but takes work), but it is easy for both decision
trees and KNN. For example, for decision trees (recall Algorithm 1.3),
the only changes are to: (1) ensure that line 1 computes the most fre-
quent weighted answer, and (2) change lines 10 and 11 to compute
weighted errors. Why is it hard to change the per-

ceptron? (Hint: it has to do with the
fact that perceptron is online.)

?

How would you modify KNN to
take into account weights??

5.2 Multiclass Classification

Multiclass classification is a natural extension of binary classification.
The goal is still to assign a discrete label to examples (for instance,
is a document about entertainment, sports, finance or world news?).
The difference is that you have K > 2 classes to choose from.

Given:

1. An input space X and number of classes K

2. An unknown distribution D over X×[K]

Compute: A function f minimizing: E(x,y)∼D
[

f (x) 6= y
]

TASK: MULTICLASS CLASSIFICATION

Note that this is identical to binary classification, except for the
presence of K classes. (In the above, [K] = {1, 2, 3, . . . , K}.) In fact, if
you set K = 2 you exactly recover binary classification.

The game we play is the same: someone gives you a binary classi-
fier and you have to use it to solve the multiclass classification prob-
lem. A very common approach is the one versus all technique (also
called OVA or one versus rest). To perform OVA, you train K-many

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

beyond binary classification 73

Algorithm 12 OneVersusAllTrain(Dmulticlass, BinaryTrain)
1: for i = 1 to K do
2: Dbin ← relabel Dmulticlass so class i is positive and ¬i is negative
3: fi ← BinaryTrain(Dbin)
4: end for
5: return f1, . . . , fK

Algorithm 13 OneVersusAllTest(f1, . . . , fK , x̂)
1: score← 〈0, 0, . . . , 0〉 // initialize K-many scores to zero
2: for i = 1 to K do
3: y← fi(x̂)
4: scorei ← scorei + y
5: end for
6: return argmaxk scorek

binary classifiers, f1, . . . , fK. Each classifier sees all of the training
data. Classifier fi receives all examples labeled class i as positives
and all other examples as negatives. At test time, whichever classifier
predicts “positive” wins, with ties broken randomly. Suppose that you have N data

points in K classes, evenly divided.
How long does it take to train an
OVA classifier, if the base binary
classifier takes O(N) time to train?
What if the base classifier takes
O(N2) time?

?

The training and test algorithms for OVA are sketched in Algo-
rithms 5.2 and 5.2. In the testing procedure, the prediction of the ith
classifier is added to the overall score for class i. Thus, if the predic-
tion is positive, class i gets a vote; if the prdiction is negative, every-
one else (implicitly) gets a vote. (In fact, if your learning algorithm
can output a confidence, as discussed in Section ??, you can often do
better by using the confidence as y, rather than a simple ±1.)

Why would using a confidence
help.?

OVA is very natural, easy to implement, and quite natural. It also
works very well in practice, so long as you do a good job choosing
a good binary classification algorithm tuning its hyperparameters
well. Its weakness is that it can be somewhat brittle. Intuitively, it is
not particularly robust to errors in the underlying classifiers. If one
classifier makes a mistake, it eis possible that the entire prediction is
erroneous. In fact, it is entirely possible that none of the K classifiers
predicts positive (which is actually the worst-case scenario from a
theoretical perspective)! This is made explicit in the OVA error bound
below.

Theorem 3 (OVA Error Bound). Suppose the average binary error of the
K binary classifiers is ε. Then the error rate of the OVA multiclass predictor
is at most (K− 1)ε.

Proof of Theorem 3. The key question is erroneous predictions from
the binary classifiers lead to multiclass errors. We break it down into
false negatives (predicting -1 when the truth is +1) and false positives
(predicting +1 when the truth is -1).

When a false negative occurs, then the testing procedure chooses

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

74 a course in machine learning

randomly between available options, which is all labels. This gives a
(K − 1)/K probability of multiclass error. Since only one binary error
is necessary to make this happen, the efficiency of this error mode is
[(K− 1)/K]/1 = (K− 1)/K.

Multiple false positives can occur simultaneously. Suppose there
are m false positives. If there is simultaneously a false negative, the
error is 1. In order for this to happen, there have to be m + 1 errors,
so the efficiency is 1/(M + 1). In the case that there is not a simulta-
neous false negative, the error probability is m/(m + 1). This requires
m errors, leading to an efficiency of 1/(m + 1).

The worse case, therefore, is the false negative case, which gives an
efficiency of (K − 1)/K. Since we have K-many opportunities to err,
we multiply this by K and get a bound of (K− 1)ε.

The constants in this are relatively unimportant: the aspect that
matters is that this scales linearly in K. That is, as the number of
classes grows, so does your expected error.

To develop alternative approaches, a useful way to think about
turning multiclass classification problems into binary classification
problems is to think of them like tournaments (football, soccer–aka
football, cricket, tennis, or whatever appeals to you). You have K
teams entering a tournament, but unfortunately the sport they are
playing only allows two to compete at a time. You want to set up a
way of pairing the teams and having them compete so that you can
figure out which team is best. In learning, the teams are now the
classes and you’re trying to figure out which class is best.1 1 The sporting analogy breaks down

a bit for OVA: K games are played,
wherein each team will play simultane-
ously against all other teams.

One natural approach is to have every team compete against ev-
ery other team. The team that wins the majority of its matches is
declared the winner. This is the all versus all (or AVA) approach
(sometimes called all pairs). The most natural way to think about it
is as training (K

2) classifiers. Say fij for 1 ≤ i < j ≤ k is the classifier
that pits class i against class j. This classifier receives all of the class i
examples as “positive” and all of the class j examples as “negative.”
When a test point arrives, it is run through all fij classifiers. Every
time fij predicts positive, class i gets a point; otherwise, class j gets a
point. After running all (K

2) classifiers, the class with the most votes
wins. Suppose that you have N data

points in K classes, evenly divided.
How long does it take to train an
AVA classifier, if the base binary
classifier takes O(N) time to train?
What if the base classifier takes
O(N2) time? How does this com-
pare to OVA?

?

The training and test algorithms for AVA are sketched in Algo-
rithms 5.2 and 5.2. In theory, the AVA mapping is more complicated
than the weighted binary case. The result is stated below, but the
proof is omitted.

Theorem 4 (AVA Error Bound). Suppose the average binary error of
the (K

2) binary classifiers is ε. Then the error rate of the AVA multiclass
predictor is at most 2(K− 1)ε.

The bound for AVA is 2(K− 1)ε; the
bound for OVA is (K − 1)ε. Does
this mean that OVA is necessarily
better than AVA? Why or why not?

?

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

beyond binary classification 75

Algorithm 14 AllVersusAllTrain(Dmulticlass, BinaryTrain)
1: fij ← ∅, ∀1 ≤ i < j ≤ K
2: for i = 1 to K-1 do
3: Dpos ← all x ∈ Dmulticlass labeled i
4: for j = i+1 to K do
5: Dneg ← all x ∈ Dmulticlass labeled j
6: Dbin ← {(x,+1) : x ∈ Dpos} ∪ {(x,−1) : x ∈ Dneg}
7: fij ← BinaryTrain(Dbin)
8: end for
9: end for

10: return all fijs

Algorithm 15 AllVersusAllTest(all f i j , x̂)

1: score← 〈0, 0, . . . , 0〉 // initialize K-many scores to zero
2: for i = 1 to K-1 do
3: for j = i+1 to K do
4: y← fij(x̂)
5: scorei ← scorei + y
6: scorej ← scorej - y
7: end for
8: end for
9: return argmaxk scorek

Figure 5.1: data set on which OVA will
do terribly with linear classifiersConsider the data in Figure 5.1 and

assume that you are using a percep-
tron as the base classifier. How well
will OVA do on this data? What
about AVA?

?

At this point, you might be wondering if it’s possible to do bet-
ter than something linear in K. Fortunately, the answer is yes! The
solution, like so much in computer science, is divide and conquer.
The idea is to construct a binary tree of classifiers. The leaves of this
tree correspond to the K labels. Since there are only log2 K decisions
made to get from the root to a leaf, then there are only log2 K chances
to make an error.

Figure 5.2: example classification tree
for K = 8

An example of a classification tree for K = 8 classes is shown in
Figure 5.2. At the root, you distinguish between classes {1, 2, 3, 4}
and classes {5, 6, 7, 8}. This means that you will train a binary clas-
sifier whose positive examples are all data points with multiclass
label {1, 2, 3, 4} and whose negative examples are all data points with
multiclass label {5, 6, 7, 8}. Based on what decision is made by this
classifier, you can walk down the appropriate path in the tree. When
K is not a powwr of 2, the tree will not be full. This classification tree
algorithm achieves the following bound.

Theorem 5 (Tree Error Bound). Suppose the average binary classifiers
error is ε. Then the error rate of the tree classifier is at most dlog2 Ke ε.

Proof of Theorem 5. A multiclass error is made if any classifier on
the path from the root to the correct leaf makes an error. Each has
probability ε of making an error and the path consists of at most

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

76 a course in machine learning

dlog2 Ke binary decisions.

One think to keep in mind with tree classifiers is that you have
control over how the tree is defined. In OVA and AVA you have no
say in what classification problems are created. In tree classifiers,
the only thing that matters is that, at the root, half of the classes are
considered positive and half are considered negative. You want to
split the classes in such a way that this classification decision is as
easy as possible. You can use whatever you happen to know about
your classification problem to try to separate the classes out in a
reasonable way.

Can you do better than dlog2 Ke ε? It turns out the answer is yes,
but the algorithms to do so are relatively complicated. You can actu-
ally do as well as 2ε using the idea of error-correcting tournaments.
Moreover, you can prove a lower bound that states that the best you
could possible do is ε/2. This means that error-correcting tourna-
ments are at most a factor of four worse than optimal.

5.3 Ranking

You start a new web search company called Goohooing. Like other
search engines, a user inputs a query and a set of documents is re-
trieved. Your goal is to rank the resulting documents based on rel-
evance to the query. The ranking problem is to take a collection of
items and sort them according to some notion of preference. One of
the trickiest parts of doing ranking through learning is to properly
define the loss function. Toward the end of this section you will see a
very general loss function, but before that let’s consider a few special
cases.

Continuing the web search example, you are given a collection of
queries. For each query, you are also given a collection of documents,
together with a desired ranking over those documents. In the follow-
ing, we’ll assume that you have N-many queries and for each query
you have M-many documents. (In practice, M will probably vary
by query, but for ease we’ll consider the simplified case.) The goal is
to train a binary classifier to predict a preference function. Given a
query q and two documents di and dj, the classifier should predict
whether di should be preferred to dj with respect to the query q.

As in all the previous examples, there are two things we have to
take care of: (1) how to train the classifier that predicts preferences;
(2) how to turn the predicted preferences into a ranking. Unlike the
previous examples, the second step is somewhat complicated in the
ranking case. This is because we need to predict an entire ranking of
a large number of documents, somehow assimilating the preference

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

beyond binary classification 77

Algorithm 16 NaiveRankTrain(RankingData, BinaryTrain)
1: D← []
2: for n = 1 to N do
3: for all i, j = 1 to M and i 6= j do
4: if i is prefered to j on query n then
5: D← D ⊕ (xnij,+1)
6: else if j is prefered to i on query n then
7: D← D ⊕ (xnij,−1)
8: end if
9: end for

10: end for
11: return BinaryTrain(D)

Algorithm 17 NaiveRankTest(f , x̂)
1: score← 〈0, 0, . . . , 0〉 // initialize M-many scores to zero
2: for all i, j = 1 to M and i 6= j do
3: y← f (x̂ij) // get predicted ranking of i and j
4: scorei ← scorei + y
5: scorej ← scorej - y
6: end for
7: return argsort(score) // return queries sorted by score

function into an overall permutation.
For notationally simplicity, let xnij denote the features associated

with comparing document i to document j on query n. Training is
fairly straightforward. For every n and every pair i 6= j, we will
create a binary classification example based on features xnij. This
example is positive if i is preferred to j in the true ranking. It is neg-
ative if j is preferred to i. (In some cases the true ranking will not
express a preference between two objects, in which case we exclude
the i, j and j, i pair from training.)

Now, you might be tempted to evaluate the classification perfor-
mance of this binary classifier on its own. The problem with this
approach is that it’s impossible to tell—just by looking at its output
on one i, j pair—how good the overall ranking is. This is because
there is the intermediate step of turning these pairwise predictions
into a coherent ranking. What you need to do is measure how well
the ranking based on your predicted preferences compares to the true
ordering. Algorithms 5.3 and 5.3 show naive algorithms for training
and testing a ranking function.

These algorithms actually work quite well in the case of bipartite
ranking problems. A bipartite ranking problem is one in which you
are only ever trying to predict a binary response, for instance “is this
document relevant or not?” but are being evaluated according to a
metric like AUC. This is essentially because the only goal in bipartite

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

78 a course in machine learning

problems to to ensure that all the relevant documents are ahead of
all the irrelevant documents. There is no notion that one relevant
document is more relevant than another.

For non-bipartite ranking problems, you can do better. First, when
the preferences that you get at training time are more nuanced than
“relevant or not,” you can incorporate these preferences at training
time. Effectively, you want to give a higher weight to binary prob-
lems that are very different in terms of perference than others. Sec-
ond, rather than producing a list of scores and then calling an arbi-
trary sorting algorithm, you can actually use the preference function
as the sorting function inside your own implementation of quicksort.

We can now formalize the problem. Define a ranking as a function
σ that maps the objects we are ranking (documents) to the desired
position in the list, 1, 2, . . . M. If σu < σv then u is preferred to v (i.e.,
appears earlier on the ranked document list). Given data with ob-
served rankings σ, our goal is to learn to predict rankings for new
objects, σ̂. We define ΣM as the set of all ranking functions over M
objects. We also wish to express the fact that making a mistake on
some pairs is worse than making a mistake on others. This will be
encoded in a cost function ω (omega), where ω(i, j) is the cost for ac-
cidentally putting something in position j when it should have gone
in position i. To be a valid cost function valid, ω must be (1) symmet-
ric, (2) monotonic and (3) satisfy the triangle inequality. Namely: (1)
ω(i, j) = ω(j, i); (2) if i < j < k or i > j > k then ω(i, j) ≤ ω(i, k);
(3) ω(i, j) + ω(j, k) ≥ ω(i, k). With these definitions, we can properly
define the ranking problem.

Given:

1. An input space X

2. An unknown distribution D over X×ΣM

Compute: A function f : X → ΣM minimizing:

E(x,σ)∼D

[
∑

u 6=v
[σu < σv] [σ̂v < σ̂u] ω(σu, σv)

]
(5.7)

where σ̂ = f (x)

TASK: ω-RANKING

In this definition, the only complex aspect is the loss function 5.7.
This loss sums over all pairs of objects u and v. If the true ranking (σ)
prefers u to v, but the predicted ranking (σ̂) prefers v to u, then you
incur a cost of ω(σu, σv).

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

beyond binary classification 79

Algorithm 18 RankTrain(Drank, ω, BinaryTrain)
1: Dbin ← []
2: for all (x, σ) ∈ Drank do
3: for all u 6= v do
4: y← sign(σv - σu) // y is +1 if u is prefered to v
5: w← ω(σu, σv) // w is the cost of misclassification
6: Dbin ← Dbin ⊕ (y, w, xuv)
7: end for
8: end for
9: return BinaryTrain(Dbin)

Depending on the problem you care about, you can set ω to many
“standard” options. If ω(i, j) = 1 whenever i 6= j, then you achieve
the Kemeny distance measure, which simply counts the number of
pairwise misordered items. In many applications, you may only care
about getting the top K predictions correct. For instance, your web
search algorithm may only display K = 10 results to a user. In this
case, you can define:

ω(i, j) =

{
1 if min{i, j} ≤ K and i 6= j
0 otherwise

(5.8)

In this case, only errors in the top K elements are penalized. Swap-
ping items 55 and 56 is irrelevant (for K < 55).

Finally, in the bipartite ranking case, you can express the area
under the curve (AUC) metric as:

ω(i, j) =
(M

2)

M+(M−M+)
×

1 if i ≤ M+ and j > M+

1 if j ≤ M+ and i > M+

0 otherwise
(5.9)

Here, M is the total number of objects to be ranked and M+ is the
number that are actually “good.” (Hence, M − M+ is the number
that are actually “bad,” since this is a bipartite problem.) You are
only penalized if you rank a good item in position greater than M+

or if you rank a bad item in a position less than or equal to M+.
In order to solve this problem, you can follow a recipe similar to

the naive approach sketched earlier. At training time, the biggest
change is that you can weight each training example by how bad it
would be to mess it up. This change is depicted in Algorithm 5.3,
where the binary classiciation data has weights w provided for saying
how important a given example is. These weights are derived from
the cost function ω.

At test time, instead of predicting scores and then sorting the list,
you essentially run the quicksort algorith, using f as a comparison
function. At each step in Algorithm 5.3, a pivot p is chosen. Every

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

80 a course in machine learning

Algorithm 19 RankTest(f , x̂, obj)
1: if obj contains 0 or 1 elements then
2: return obj
3: else
4: p← randomly chosen object in obj // pick pivot
5: left← [] // elements that seem smaller than p
6: right← [] // elements that seem larger than p
7: for all u ∈ obj \{p} do
8: ŷ ← f (xup) // what is the probability that u precedes p
9: if uniform random variable < ŷ then

10: left← left ⊕ u
11: else
12: right← right ⊕ u
13: end if
14: end for
15: left← RankTest(f , x̂, left) // sort earlier elements
16: right← RankTest(f , x̂, right) // sort later elements
17: return left ⊕ 〈p〉 ⊕ right
18: end if

other object u is compared to p using f . If f thinks u is better, then it
is sorted on the left; otherwise it is sorted on the right. There is one
major difference between this algorithmand quicksort: the compari-
son function is allowed to be probabilistic. If f outputs probabilities,
for instance it predicts that u has an 80% probability of being better
than p, then it puts it on the left with 80% probability and on the
right with 20% probability. (The pseudocode is written in such a way
that even if f just predicts −1,+1, the algorithm still works.)

This algorithm is better than the naive algorithm in at least two
ways. First, it only makes O(M log2 M) calls to f (in expectation),
rather than O(M2) calls in the naive case. Second, it achieves a better
error bound, shown below:

Theorem 6 (Rank Error Bound). Suppose the average binary error of f
is ε. Then the ranking algorithm achieves a test error of at most 2ε in the
general case, and ε in the bipartite case.

5.4 Collective Classification

Figure 5.3: example face finding image
and pixel mask

You are writing new software for a digital camera that does face
identification. However, instead of simply finding a bounding box
around faces in an image, you must predict where a face is at the
pixel level. So your input is an image (say, 100×100 pixels: this is a
really low resolution camera!) and your output is a set of 100×100
binary predictions about each pixel. You are given a large collection
of training examples. An example input/output pair is shown in

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

beyond binary classification 81

Figure 5.3.
Your first attempt might be to train a binary classifier to predict

whether pixel (i, j) is part of a face or not. You might feed in features
to this classifier about the RGB values of pixel (i, j) as well as pixels
in a window arround that. For instance, pixels in the region {(i +
k, j + l) : k ∈ [−5, 5], l ∈ [−5, 5]}.

Figure 5.4: bad pixel mask for previous
image

You run your classifier and notice that it predicts weird things,
like what you see in Figure 5.4. You then realize that predicting each
pixel independently is a bad idea! If pixel (i, j) is part of a face, then
this significantly increases the chances that pixel (i + 1, j) is also part
of a face. (And similarly for other pixels.) This is a collective classifi-
cation problem because you are trying to predict multiple, correlated
objects at the same time.

Similar problems come up all the
time. Cast the following as collec-
tive classification problems: web
page categorization; labeling words
in a sentence as noun, verb, adjec-
tive, etc.; finding genes in DNA
sequences; predicting the stock
market.

?

The most general way to formulate these problems is as (undi-
rected) graph prediction problems. Our input now takes the form
of a graph, where the vertices are input/output pairs and the edges
represent the correlations among the putputs. (Note that edges do
not need to express correlations among the inputs: these can simply
be encoded on the nodes themselves.) For example, in the face identi-
fication case, each pixel would correspond to an vertex in the graph.
For the vertex that corresponds to pixel (5, 10), the input would be
whatever set of features we want about that pixel (including features
about neighboring pixels). There would be edges between that vertex
and (for instance) vertices (4, 10), (6, 10), (5, 9) and (5, 11). If we are
predicting one of K classes at each vertex, then we are given a graph
whose vertices are labeled by pairs (x, k) ∈ X×[K]. We will write
G(X×[K]) to denote the set of all such graphs. A graph in this set is
denoted as G = (V, E) with vertices V and edges E. Our goal is a
function f that takes as input a graph from G(X) and predicts a label
from [K] for each of its vertices. Formulate the example problems

above as graph prediction prob-
lems.

?

Given:

1. An input space X and number of classes K

2. An unknown distribution D over G(X×[K])

Compute: A function f : G(X) → G([K]) minimizing:
E(V,E)∼D

[
∑v∈V

[
ŷv 6= yv

]]
, where yv is the label associated

with vertex v in G and ŷv is the label predicted by f (G).

TASK: COLLECTIVE CLASSIFICATION

In collective classification, you would like to be able to use the
labels of neighboring vertices to help predict the label of a given

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

82 a course in machine learning

vertex. For instance, you might want to add features to the predict of
a given vertex based on the labels of each neighbor. At training time,
this is easy: you get to see the true labels of each neighbor. However,
at test time, it is much more difficult: you are, yourself, predicting the
labels of each neighbor.

This presents a chicken and egg problem. You are trying to predict
a collection of labels. But the prediction of each label depends on the
prediction of other labels. If you remember from before, a general so-
lution to this problem is iteration: you can begin with some guesses,
and then try to improve these guesses over time. 2 2 Alternatively, the fact that we’re using

a graph might scream to you “dynamic
programming.” Rest assured that
you can do this too: skip forward to
Chapter 18 for lots more detail here!

Figure 5.5: a charicature of how stack-
ing works

This is the idea of stacking for solving collective classification
(see Figure 5.5. You can train 5 classifiers. The first classifier just
predicts the value of each pixel independently, like in Figure 5.4.
This doesn’t use any of the graph structure at all. In the second level,
you can repeat the classification. However, you can use the outputs
from the first level as initial guesses of labels. In general, for the Kth
level in the stack, you can use the inputs (pixel values) as well as
the predictions for all of the K − 1 previous levels of the stack. This
means training K-many binary classifiers based on different feature
sets.

The prediction technique for stacking is sketched in Algorithm 5.4.
This takes a list of K classifiers, corresponding to each level in the
stack, and an input graph G. The variable Ŷk,v stores the prediction
of classifier k on vertex v in the graph. You first predict every node
in the vertex using the first layer in the stack, and no neighboring
information. For the rest of the layers, you add on features to each
node based on the predictions made by lower levels in the stack for
neighboring nodes (N (u) denotes the neighbors of u).

The training procedure follows a similar scheme, sketched in Al-
gorithm 5.4. It largely follows the same schematic as the prediction
algorithm, but with training fed in. After the classifier for the k level
has been trained, it is used to predict labels on every node in the
graph. These labels are used by later levels in the stack, as features.

One thing to be aware of is that MulticlassTrain could con-
ceivably overfit its training data. For example, it is possible that the
first layer might actually achieve 0% error, in which case there is no
reason to iterate. But at test time, it will probably not get 0% error,
so this is misleading. There are (at least) two ways to address this
issue. The first is to use cross-validation during training, and to use
the predictions obtained during cross-validation as the predictions
from StackTest. This is typically very safe, but somewhat expensive.
The alternative is to simply over-regularize your training algorithm.
In particular, instead of trying to find hyperparameters that get the
best development data performance, try to find hyperparameters that

D
ra

ft:
D

o
N

ot
D

is
tr

ib
ut

e

beyond binary classification 83

Algorithm 20 StackTrain(Dcc, K, MulticlassTrain)
1: Dmc ← [] // our generated multiclass data
2: Ŷk,n,v ← 0, ∀k ∈ [K], n ∈ [N], v ∈ Gn // initialize predictions for all levels
3: for k = 1 to K do
4: for n = 1 to N do
5: for all v ∈ Gn do
6: (x, y) ← features and label for node v
7: x ← x ⊕ Ŷl,n,u, ∀u ∈ N (u), ∀l ∈ [k− 1] // add on features for
8: // neighboring nodes from lower levels in the stack
9: Dmc ← Dmc ⊕ (y, x) // add to multiclass data

10: end for
11: end for
12: fk ← MulticlassTrain(Dbin) // train kth level classifier
13: for n = 1 to N do
14: Ŷk,n,v ← StackTest(f1, . . . , fk, Gn) // predict using kth level classifier
15: end for
16: end for
17: return f1, . . . , fK // return all classifiers

Algorithm 21 StackTest(f1, . . . , fK , G)
1: Ŷk,v ← 0, ∀k ∈ [K], v ∈ G // initialize predictions for all levels
2: for k = 1 to K do
3: for all v ∈ G do
4: x ← features for node v
5: x ← x ⊕ Ŷl,u, ∀u ∈ N (u), ∀l ∈ [k− 1] // add on features for
6: // neighboring nodes from lower levels in the stack
7: Ŷk,v ← fk(x) // predict according to kth level
8: end for
9: end for

10: return {ŶK,v : v ∈ G} // return predictions for every node from the last layer

make your training performance approximately equal to your devel-
opment performance. This will ensure that your predictions at the kth
layer are indicative of how well the algorithm will actually do at test
time.

TODO: finish this discussion

5.5 Exercises

Exercise 5.1. TODO. . .

	Beyond Binary Classification
	Learning with Imbalanced Data
	Multiclass Classification
	Ranking
	Collective Classification
	Exercises

