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4|MachineLearning inPractice

TODO: one two two examples per feature

Dependencies: Chap-
ter ??,Chapter ??,Chapter ??

At this point, you have seen three qualitatively different models
for learning: decision trees, nearest neighbors, and perceptrons. You
have also learned about clustering with the K-means algorithm. You
will shortly learn about more complex models, most of which are
variants on things you already know. However, before attempting
to understand more complex models of learning, it is important to
have a firm grasp on how to use machine learning in practice. This
chapter is all about how to go from an abstract learning problem
to a concrete implementation. You will see some examples of “best
practices” along with justifications of these practices.

In many ways, going from an abstract problem to a concrete learn-
ing task is more of an art than a science. However, this art can have
a huge impact on the practical performance of learning systems. In
many cases, moving to a more complicated learning algorithm will
gain you a few percent improvement. Going to a better representa-
tion will gain you an order of magnitude improvement. To this end,
we will discuss several high level ideas to help you develop a better
artistic sensibility.

4.1 The Importance of Good Features

Machine learning is magical. You give it data and it manages to
classify that data. For many, it can actually outperform a human! But,
like so many problems in the world, there is a significant “garbage
in, garbage out” aspect to machine learning. If the data you give it is
trash, the learning algorithm is unlikely to be able to overcome it.

Consider a problem of object recognition from images. If you start
with a 100×100 pixel image, a very easy feature representation of
this image is as a 30, 000 dimensional vector, where each dimension
corresponds to the red, green or blue component of some pixel in
the image. So perhaps feature 1 is the amount of red in pixel (1, 1);
feature 2 is the amount of green in that pixel; and so on. This is the
pixel representation of images.

Figure 4.1: prac:imagepix: object
recognition in pixels

One thing to keep in mind is that the pixel representation throws

Learning Objectives:
• Translate between a problem de-

scription and a concrete learning
problem.

• Perform basic feature engineering on
image and text data.

• Explain how to use cross-validation
to tune hyperparameters and esti-
mate future performance.

• Compare and contrast the differ-
ences between several evaluation
metrics.

• Explain why feature combinations
are important for learning with
some models but not others.

• Explain the relationship between the
three learning techniques you have
seen so far.

• Apply several debugging techniques
to learning algorithms.

In theory, there is no difference between theory and practice.

But, in practice, there is. -- Jan L.A. van de Snepscheut
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52 a course in machine learning

away all locality information in the image. Learning algorithms don’t
care about features: they only care about feature values. So I can
permute all of the features, with no effect on the learning algorithm
(so long as I apply the same permutation to all training and test
examples). Figure 4.1 shows some images whos pixels have been
randomly permuted (in this case only the pixels are permuted, not
the colors). All of these objects are things that you’ve seen plenty of
examples of; can you identify them? Should you expect a machine to
be able to?

Figure 4.2: prac:imagepatch: object
recognition in patches

Figure 4.3: prac:imageshape: object
recognition in shapes

An alternative representation of images is the patch represen-
tation, where the unit of interest is a small rectangular block of an
image, rather than a single pixel. Again, permuting the patches has
no effect on the classifier. Figure 4.2 shows the same images in patch
representation. Can you identify them? A final representation is a
shape representation. Here, we throw out all color and pixel infor-
mation and simply provide a bounding polygon. Figure 4.3 shows
the same images in this representation. Is this now enough to iden-
tify them? (If not, you can find the answers at the end of this chap-
ter.)

Figure 4.4: prac:bow: BOW repr of one
positive and one negative review

In the context of text categorization (for instance, the sentiment
recognition task), one standard representation is the bag of words
representation. Here, we have one feature for each unique word that
appears in a document. For the feature happy, the feature value is
the number of times that the word “happy” appears in the document.
The bag of words (BOW) representation throws away all position
information. Figure 4.4 shows a BOW representation for two docu-
ments: one positive and one negative. Can you tell which is which?

4.2 Irrelevant and Redundant Features

One big difference between learning models is how robust they are to
the addition of noisy or irrelevant features. Intuitively, an irrelevant
feature is one that is completely uncorrelated with the prediction
task. A feature f whose expectation does not depend on the label
E[ f | Y] = E[ f ] might be irrelevant. For instance, the presence of
the word “the” might be largely irrelevant for predicting whether a
course review is positive or negative.

Is it possible to have a feature f
whose expectation does not depend
on the label, but is nevertheless still
useful for prediction?

?

A secondary issue is how well these algorithms deal with redun-
dant features. Two features are redundant if they are highly cor-
related, regardless of whether they are correlated with the task or
not. For example, having a bright red pixel in an image at position
(20, 93) is probably highly redundant with having a bright red pixel
at position (21, 93). Both might be useful (eg., for identifying fire hy-
drants), but because of how images are structured, these two features
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are likely to co-occur frequently.
When thinking about robustness to irrelevant or redundant fea-

tures, it is usually not worthwhile thinking of the case where one has
999 great features and 1 bad feature. The interesting case is when the
bad features outnumber the good features, and often outnumber by
a large degree. For instance, perhaps the number of good features is
something like log D out of a set of D total features. The question is
how robust are algorithms in this case.1 1 You might think it’s crazy to have so

many irrelevant features, but the cases
you’ve seen so far (bag of words, bag
of pixels) are both reasonable examples
of this! How many words, out of the
entire English vocabulary (roughly
10, 000− 100, 000 words), are actually
useful for predicting positive and
negative course reviews?

For shallow decision trees, the model explicitly selects features
that are highly correlated with the label. In particular, by limiting the
depth of the decision tree, one can at least hope that the model will be
able to throw away irrelevant features. Redundant features are almost
certainly thrown out: once you select one feature, the second feature
now looks mostly useless. The only possible issue with irrelevant
features is that even though they’re irrelevant, they happen to correlate
with the class label on the training data, but chance.

As a thought experiment, suppose that we have N training ex-
amples, and exactly half are positive examples and half are negative
examples. Suppose there’s some binary feature, f , that is completely
uncorrelated with the label. This feature has a 50/50 chance of ap-
pearing in any example, regardless of the label. In principle, the deci-
sion tree should not select this feature. But, by chance, especially if N
is small, the feature might look correlated with the label. This is anal-
ogous to flipping two coins simultaneously N times. Even though the
coins are independent, it’s entirely possible that you will observe a
sequence like (H, H), (T, T), (H, H), (H, H), which makes them look
entirely correlated! The hope is that as N grows, this becomes less
and less likely. In fact, we can explicitly compute how likely this is to
happen.

To do this, let’s fix the sequence of N labels. We now flip a coin N
times and consider how likely it is that it exactly matches the label.
This is easy: the probability is 0.5N . Now, we would also be confused
if it exactly matched not the label, which has the same probability. So
the chance that it looks perfectly correlated is 0.5N + 0.5N = 0.5N−1.
Thankfully, this shrinks down very small (eg., 10−6) after only 21
data points.

This makes us happy. The problem is that we don’t have one ir-
relevant feature: we have D − log D irrelevant features! If we ran-
domly pick two irrelevant feature values, each has the same prob-
ability of perfectly correlating: 0.5N−1. But since there are two and
they’re independent coins, the chance that either correlates perfectly
is 2×0.5N−1 = 0.5N−2. In general, if we have K irrelevant features, all
of which are random independent coins, the chance that at least one
of them perfectly correlates is 0.5N−K. This suggests that if we have
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a sizeable number K of irrelevant features, we’d better have at least
K + 21 training examples.

Unfortunately, the situation is actually worse than this. In the
above analysis we only considered the case of perfect correlation. We
could also consider the case of partial correlation, which would yield
even higher probabilities. (This is left as Exercise ?? for those who
want some practice with probabilistic analysis.) Suffice it to say that
even decision trees can become confused.

Figure 4.5: prac:addirel: data from
high dimensional warning, interpolated

In the case of K-nearest neighbors, the situation is perhaps more
dire. Since KNN weighs each feature just as much as another feature,
the introduction of irrelevant features can completely mess up KNN
prediction. In fact, as you saw, in high dimensional space, randomly
distributed points all look approximately the same distance apart.
If we add lots and lots of randomly distributed features to a data
set, then all distances still converge. This is shown experimentally in
Figure ??, where we start with the digit categorization data and con-
tinually add irrelevant, uniformly distributed features, and generate a
histogram of distances. Eventually, all distances converge.

In the case of the perceptron, one can hope that it might learn to
assign zero weight to irrelevant features. For instance, consider a
binary feature is randomly one or zero independent of the label. If
the perceptron makes just as many updates for positive examples
as for negative examples, there is a reasonable chance this feature
weight will be zero. At the very least, it should be small. What happens with the perceptron

with truly redundant features (i.e.,
one is literally a copy of the other)?

?

Figure 4.6: prac:noisy: dt,knn,perc on
increasing amounts of noise

To get a better practical sense of how sensitive these algorithms
are to irrelevant features, Figure 4.6 shows the test performance of
the three algorithms with an increasing number of compltely noisy
features. In all cases, the hyperparameters were tuned on validation
data. TODO...

4.3 Feature Pruning and Normalization

In text categorization problems, some words simply do not appear
very often. Perhaps the word “groovy”2 appears in exactly one train-

2 This is typically positive indicator,
or at least it was back in the US in the
1970s.

ing document, which is positive. Is it really worth keeping this word
around as a feature? It’s a dangerous endeavor because it’s hard to
tell with just one training example if it is really correlated with the
positive class, or is it just noise. You could hope that your learning
algorithm is smart enough to figure it out. Or you could just remove
it. That means that (a) the learning algorithm won’t have to figure it
out, and (b) you’ve reduced the number of dimensions you have, so
things should be more efficient, and less “scary.”

Figure 4.7: prac:pruning: effect of
pruning on text data

This idea of feature pruning is very useful and applied in many
applications. It is easiest in the case of binary features. If a binary
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data mean, variance, moments, expectations, etc...

MATH REVIEW | DATA STATISTICS: MEANS AND VARIANCES

Figure 4.8:

feature only appears some small number K times (in the training
data: no fair looking at the test data!), you simply remove it from
consideration. (You might also want to remove features that appear
in all-but-K many documents, for instance the word “the” appears in
pretty much every English document ever written.) Typical choices
for K are 1, 2, 5, 10, 20, 50, mostly depending on the size of the data.
On a text data set with 1000 documents, a cutoff of 5 is probably
reasonable. On a text data set the size of the web, a cut of of 50 or
even 100 or 200 is probably reasonable3. Figure 4.7 shows the effect 3 According to Google, the following

words (among many others) appear
200 times on the web: moudlings, agag-
gagctg, setgravity, rogov, prosomeric,
spunlaid, piyushtwok, telelesson, nes-
mysl, brighnasa. For comparison, the
word “the” appears 19, 401, 194, 714 (19

billion) times.

of pruning on a sentiment analysis task. In the beginning, pruning
does not hurt (and sometimes helps!) but eventually we prune away
all the interesting words and performance suffers.

Figure 4.9: prac:variance: effect of
pruning on vision

In the case of real-valued features, the question is how to extend
the idea of “does not occur much” to real values. A reasonable def-
inition is to look for features with low variance. In fact, for binary
features, ones that almost never appear or almost always appear will
also have low variance. Figure 4.9 shows the result of pruning low-
variance features on the digit recognition task. Again, at first pruning
does not hurt (and sometimes helps!) but eventually we have thrown
out all the useful features.

Earlier we discussed the problem
of scale of features (eg., millimeters
versus centimeters). Does this have
an impact on variance-based feature
pruning?

?

Once you have pruned away irrelevant features, it is often useful
to normalize the data so that it is consistent in some way. There are
two basic types of normalization: feature normalization and exam-
ple normalization. In feature normalization, you go through each
feature and adjust it the same way across all examples. In example
normalization, each example is adjusted individually.

Figure 4.10: prac:transform: picture
of centering, scaling by variance and
scaling by absolute value

The goal of both types of normalization is to make it easier for your
learning algorithm to learn. In feature normalization, there are two
standard things to do:

1. Centering: moving the entire data set so that it is centered around
the origin.

2. Scaling: rescaling each feature so that one of the following holds:

(a) Each feature has variance 1 across the training data.

(b) Each feature has maximum absolute value 1 across the train-
ing data.

These transformations are shown geometrically in Figure 4.10. The
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goal of centering is to make sure that no features are arbitrarily large.
The goal of scaling is to make sure that all features have roughly the
same scale (to avoid the issue of centimeters versus millimeters). For the three models you know

about (KNN, DT, Perceptron),
which are most sensitive to center-
ing? Which are most sensitive to
scaling?

?
These computations are fairly straightforward. Here, xn,d refers

to the dth feature of example n. Since it is very rare to apply scaling
without previously applying centering, the expressions below for
scaling assume that the data is already centered.

Centering: xn,d ← xn,d − µd (4.1)

Variance Scaling: xn,d ← xn,d/σd (4.2)

Absolute Scaling: xn,d ← xn,d/rd (4.3)

where: µd =
1
N ∑

n
xn,d (4.4)

σd =

√
1
N ∑

n
(xn,d − µd)2 (4.5)

rd = max
n

∣∣xn,d
∣∣ (4.6)

In practice, if the dynamic range of your features is already some
subset of [−2, 2] or [−3, 3], then it is probably not worth the effort of
centering and scaling. (It’s an effort because you have to keep around
your centering and scaling calculations so that you can apply them
to the test data as well!) However, if some of your features are orders
of magnitude larger than others, it might be helpful. Remember that
you might know best: if the difference in scale is actually significant
for your problem, then rescaling might throw away useful informa-
tion.

One thing to be wary of is centering binary data. In many cases,
binary data is very sparse: for a given example, only a few of the
features are “on.” For instance, out of a vocabulary of 10, 000 or
100, 000 words, a given document probably only contains about 100.
From a storage and computation perspective, this is very useful.
However, after centering, the data will no longer sparse and you will
pay dearly with outrageously slow implementations.

Figure 4.11: prac:exnorm: example of
example normalization

In example normalization, you view examples one at a time. The
most standard normalization is to ensure that the length of each
example vector is one: namely, each example lies somewhere on the
unit hypersphere. This is a simple transformation:

Example Normalization: xn ← xn/ ||xn|| (4.7)

This transformation is depicted in Figure 4.11.
The main advantage to example normalization is that it makes

comparisons more straightforward across data sets. If I hand you
two data sets that differ only in the norm of the feature vectors (i.e.,
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one is just a scaled version of the other), it is difficult to compare the
learned models. Example normalization makes this more straightfor-
ward. Moreover, as you saw in the perceptron convergence proof, it is
often just mathematically easier to assume normalized data.

4.4 Combinatorial Feature Explosion

You learned in Chapter 3 that linear models (like the perceptron)
cannot solve the XOR problem. You also learned that by performing
a combinatorial feature explosion, they could. But that came at the
computational expense of gigantic feature vectors.

Of the algorithms that you’ve seen so far, the perceptron is the one
that has the most to gain by feature combination. And the decision
tree is the one that has the least to gain. In fact, the decision tree
construction is essentially building meta features for you. (Or, at
least, it is building meta features constructed purely through “logical
ands.”)

Figure 4.12: prac:dttoperc: turning a
DT into a set of meta features

This observation leads to a heuristic for constructing meta features
for perceptrons from decision trees. The idea is to train a decision
tree on the training data. From that decision tree, you can extract
meta features by looking at feature combinations along branches. You
can then add only those feature combinations as meta features to the
feature set for the perceptron. Figure 4.12 shows a small decision tree
and a set of meta features that you might extract from it. There is a
hyperparameter here of what length paths to extract from the tree: in
this case, only paths of length two are extracted. For bigger trees, or
if you have more data, you might benefit from longer paths.

Figure 4.13: prac:log: performance on
text categ with word counts versus log
word counts

In addition to combinatorial transformations, the logarithmic
transformation can be quite useful in practice. It seems like a strange
thing to be useful, since it doesn’t seem to fundamentally change
the data. However, since many learning algorithms operate by linear
operations on the features (both perceptron and KNN do this), the
log-transform is a way to get product-like operations. The question is
which of the following feels more applicable to your data: (1) every
time this feature increases by one, I’m equally more likely to predict
a positive label; (2) every time this feature doubles, I’m equally more
like to predict a positive label. In the first case, you should stick
with linear features and in the second case you should switch to
a log-transform. This is an important transformation in text data,
where the presence of the word “excellent” once is a good indicator
of a positive review; seeing “excellent” twice is a better indicator;
but the difference between seeing “excellent” 10 times and seeing it
11 times really isn’t a big deal any more. A log-transform achieves
this. Experimentally, you can see the difference in test performance
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between word count data and log-word count data in Figure 4.13.
Here, the transformation is actually xd 7→ log2(xd + 1) to ensure that
zeros remain zero and sparsity is retained.

4.5 Evaluating Model Performance

So far, our focus has been on classifiers that achieve high accuracy.
In some cases, this is not what you might want. For instance, if you
are trying to predict whether a patient has cancer or not, it might be
better to err on one side (saying they have cancer when they don’t)
than the other (because then they die). Similarly, letting a little spam
slip through might be better than accidentally blocking one email
from your boss.

There are two major types of binary classification problems. One
is “X versus Y.” For instance, positive versus negative sentiment.
Another is “X versus not-X.” For instance, spam versus non-spam.
(The argument being that there are lots of types of non-spam.) Or
in the context of web search, relevant document versus irrelevant
document. This is a subtle and subjective decision. But “X versus not-
X” problems often have more of the feel of “X spotting” rather than
a true distinction between X and Y. (Can you spot the spam? can you
spot the relevant documents?)

For spotting problems (X versus not-X), there are often more ap-
propriate success metrics than accuracy. A very popular one from
information retrieval is the precision/recall metric. Precision asks
the question: of all the X’s that you found, how many of them were
actually X’s? Recall asks: of all the X’s that were out there, how many
of them did you find?4 Formally, precision and recall are defined as: 4 A colleague make the analogy to the

US court system’s saying “Do you
promise to tell the whole truth and
nothing but the truth?” In this case, the
“whole truth” means high recall and
“nothing but the truth” means high
precision.”

P =
I
S

(4.8)

R =
I
T

(4.9)

S = number of Xs that your system found (4.10)

T = number of Xs in the data (4.11)

I = number of correct Xs that your system found (4.12)

Here, S is mnemonic for “System,” T is mnemonic for “Truth” and I
is mnemonic for “Intersection.” It is generally accepted that 0/0 = 1
in these definitions. Thus, if you system found nothing, your preci-
sion is always perfect; and if there is nothing to find, your recall is
always perfect.

Figure 4.14: prac:spam: show a bunch
of emails spam/nospam sorted by
model predicion, not perfect

Once you can compute precision and recall, you are often able to
produce precision/recall curves. Suppose that you are attempting
to identify spam. You run a learning algorithm to make predictions
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on a test set. But instead of just taking a “yes/no” answer, you allow
your algorithm to produce its confidence. For instance, in perceptron,
you might use the distance from the hyperplane as a confidence
measure. You can then sort all of your test emails according to this
ranking. You may put the most spam-like emails at the top and the
least spam-like emails at the bottom, like in Figure 4.14. How would you get a confidence

out of a decision tree or KNN??

Figure 4.15: prac:prcurve: precision
recall curve

Once you have this sorted list, you can choose how aggressively
you want your spam filter to be by setting a threshold anywhere on
this list. One would hope that if you set the threshold very high, you
are likely to have high precision (but low recall). If you set the thresh-
old very low, you’ll have high recall (but low precision). By consider-
ing every possible place you could put this threshold, you can trace out
a curve of precision/recall values, like the one in Figure 4.15. This
allows us to ask the question: for some fixed precision, what sort of
recall can I get. Obviously, the closer your curve is to the upper-right
corner, the better. And when comparing learning algorithms A and
B you can say that A dominates B if A’s precision/recall curve is
always higher than B’s.

0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.00 0.20 0.26 0.30 0.32 0.33

0.4 0.00 0.26 0.40 0.48 0.53 0.57

0.6 0.00 0.30 0.48 0.60 0.68 0.74

0.8 0.00 0.32 0.53 0.68 0.80 0.88

1.0 0.00 0.33 0.57 0.74 0.88 1.00

Table 4.1: Table of f-measures when
varying precision and recall values.

Precision/recall curves are nice because they allow us to visualize
many ways in which we could use the system. However, sometimes
we like to have a single number that informs us of the quality of the
solution. A popular way of combining precision and recall into a
single number is by taking their harmonic mean. This is known as
the balanced f-measure (or f-score):

F =
2×P×R
P + R

(4.13)

The reason that you want to use a harmonic mean rather than an
arithmetic mean (the one you’re more used to) is that it favors sys-
tems that achieve roughly equal precision and recall. In the extreme
case where P = R, then F = P = R. But in the imbalanced case, for
instance P = 0.1 and R = 0.9, the overall f-measure is a modest 0.18.
Table 4.1 shows f-measures as a function of precision and recall, so
that you can see how important it is to get balanced values.

In some cases, you might believe that precision is more impor-
tant than recall. This idea leads to the weighted f-measure, which is
parameterized by a weight β ∈ [0, ∞) (beta):

Fβ =
(1 + β2)×P×R

β2×P + R
(4.14)

For β = 1, this reduces to the standard f-measure. For β = 0, it
focuses entirely on recall and for β → ∞ it focuses entirely on preci-
sion. The interpretation of the weight is that Fβ measures the perfor-
mance for a user who cares β times as much about precision as about
recall.
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One thing to keep in mind is that precision and recall (and hence
f-measure) depend crucially on which class is considered the thing
you wish to find. In particular, if you take a binary data set if flip
what it means to be a positive or negative example, you will end
up with completely difference precision and recall values. It is not
the case that precision on the flipped task is equal to recall on the
original task (nor vice versa). Consequently, f-measure is also not the
same. For some tasks where people are less sure about what they
want, they will occasionally report two sets of precision/recall/f-
measure numbers, which vary based on which class is considered the
thing to spot.

There are other standard metrics that are used in different com-
munities. For instance, the medical community is fond of the sensi-
tivity/specificity metric. A sensitive classifier is one which almost
always finds everything it is looking for: it has high recall. In fact,
sensitivity is exactly the same as recall. A specific classifier is one
which does a good job not finding the things that it doesn’t want to
find. Specificity is precision on the negation of the task at hand.

You can compute curves for sensitivity and specificity much like
those for precision and recall. The typical plot, referred to as the re-
ceiver operating characteristic (or ROC curve) plots the sensitivity
against 1− specificity. Given an ROC curve, you can compute the
area under the curve (or AUC) metric, which also provides a mean-
ingful single number for a system’s performance. Unlike f-measures,
which tend to be low because the require agreement, AUC scores
tend to be very high, even for not great systems. This is because ran-
dom chance will give you an AUC of 0.5 and the best possible AUC
is 1.0.

The main message for evaluation metrics is that you should choose
whichever one makes the most sense. In many cases, several might
make sense. In that case, you should do whatever is more commonly
done in your field. There is no reason to be an outlier without cause.

4.6 Cross Validation

In Chapter 1, you learned about using development data (or held-out
data) to set hyperparameters. The main disadvantage to the develop-
ment data approach is that you throw out some of your training data,
just for estimating one or two hyperparameters.

An alternative is the idea of cross validation. In cross validation,
you break your training data up into 10 equally-sized partitions. You
train a learning algorithm on 9 of them and test it on the remaining
1. You do this 10 times, each time holding out a different partition as
the “development” part. You can then average your performance over
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Algorithm 8 CrossValidate(LearningAlgorithm, Data, K)
1: ε̂ ← ∞ // store lowest error encountered so far
2: α̂ ← unknown // store the hyperparameter setting that yielded it
3: for all hyperparameter settings α do
4: err← [ ] // keep track of the K-many error estimates
5: for k = 1 to K do
6: train← {(xn, yn) ∈ Data : n mod K 6= k− 1}
7: test← {(xn, yn) ∈ Data : n mod K = k− 1} // test every Kth example
8: model← Run LearningAlgorithm on train
9: err← err ⊕ error of model on test // add current error to list of errors

10: end for
11: avgErr← mean of set err
12: if avgErr < ε̂ then
13: ε̂ ← avgErr // remember these settings
14: α̂ ← α // because they’re the best so far
15: end if
16: end for

all ten parts to get an estimate of how well your model will perform
in the future. You can repeat this process for every possible choice of
hyperparameters to get an estimate of which one performs best. The
general K-fold cross validation technique is shown in Algorithm 4.6,
where K = 10 in the preceeding discussion.

In fact, the development data approach can be seen as an approxi-
mation to cross validation, wherein only one of the K loops (line 5 in
Algorithm 4.6) is executed.

Typical choices for K are 2, 5, 10 and N − 1. By far the most com-
mon is K = 10: 10-fold cross validation. Sometimes 5 is used for
efficiency reasons. And sometimes 2 is used for subtle statistical rea-
sons, but that is quite rare. In the case that K = N − 1, this is known
as leave-one-out cross validation (or abbreviated as LOO cross val-
idation). After running cross validation, you have two choices. You
can either select one of the K trained models as your final model to
make predictions with, or you can train a new model on all of the
data, using the hyperparameters selected by cross-validation. If you
have the time, the latter is probably a better options.

It may seem that LOO cross validation is prohibitively expensive
to run. This is true for most learning algorithms except for K-nearest
neighbors. For KNN, leave-one-out is actually very natural. We loop
through each training point and ask ourselves whether this example
would be correctly classified for all different possible values of K.
This requires only as much computation as computing the K nearest
neighbors for the highest value of K. This is such a popular and
effective approach for KNN classification that it is spelled out in
Algorithm ??.

Overall, the main advantage to cross validation over develop-
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Algorithm 9 KNN-Train-LOO(D)
1: errk ← 0, ∀1 ≤ k ≤ N − 1 // errk stores how well you do with kNN
2: for n = 1 to N do
3: Sm ← 〈||xn − xm|| , m〉, ∀m 6= n // compute distances to other points
4: S← sort(S) // put lowest-distance objects first
5: ŷ ← 0 // current label prediction
6: for k = 1 to N− 1 do
7: 〈dist,m〉 ← Sk
8: ŷ ← ŷ + ym // let kth closest point vote
9: if ŷ 6= ym then

10: errk ← errk + 1 // one more error for kNN
11: end if
12: end for
13: end for
14: return argmink errk // return the K that achieved lowest error

ment data is robustness. The main advantage of development data is
speed.

One warning to keep in mind is that the goal of both cross valida-
tion and development data is to estimate how well you will do in the
future. This is a question of statistics, and holds only if your test data
really looks like your training data. That is, it is drawn from the same
distribution. In many practical cases, this is not entirely true.

For example, in person identification, we might try to classify
every pixel in an image based on whether it contains a person or not.
If we have 100 training images, each with 10, 000 pixels, then we have
a total of 1m training examples. The classification for a pixel in image
5 is highly dependent on the classification for a neighboring pixel in
the same image. So if one of those pixels happens to fall in training
data, and the other in development (or cross validation) data, your
model will do unreasonably well. In this case, it is important that
when you cross validate (or use development data), you do so over
images, not over pixels. The same goes for text problems where you
sometimes want to classify things at a word level, but are handed a
collection of documents. The important thing to keep in mind is that
it is the images (or documents) that are drawn independently from
your data distribution and not the pixels (or words), which are drawn
dependently.

4.7 Hypothesis Testing and Statistical Significance

story
VIGNETTE: THE LADY DRINKING TEA
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Suppose that you’ve presented a machine learning solution to your
boss that achieves 7% error on cross validation. Your nemesis, Gabe,
gives a solution to your boss that achieves 6.9% error on cross vali-
dation. How impressed should your boss be? It depends. If this 0.1%
improvement was measured over 1000 examples, perhaps not too
impressed. It would mean that Gabe got exactly one more example
right than you did. (In fact, he probably got 15 more right and 14
more wrong.) If this 0.1% impressed was measured over 1, 000, 000
examples, perhaps this is more impressive.

This is one of the most fundamental questions in statistics. You
have a scientific hypothesis of the form “Gabe’s algorithm is better
than mine.” You wish to test whether this hypothesis is true. You
are testing it against the null hypothesis, which is that Gabe’s algo-
rithm is no better than yours. You’ve collected data (either 1000 or
1m data points) to measure the strength of this hypothesis. You want
to ensure that the difference in performance of these two algorithms
is statistically significant: i.e., is probably not just due to random
luck. (A more common question statisticians ask is whether one drug
treatment is better than another, where “another” is either a placebo
or the competitor’s drug.)

There are about ∞-many ways of doing hypothesis testing. Like
evaluation metrics and the number of folds of cross validation, this is
something that is very discipline specific. Here, we will discuss two
popular tests: the paired t-test and bootstrapping. These tests, and
other statistical tests, have underlying assumptions (for instance, as-
sumptions about the distribution of observations) and strengths (for
instance, small or large samples). In most cases, the goal of hypoth-
esis testing is to compute a p-value: namely, the probability that the
observed difference in performance was by chance. The standard way
of reporting results is to say something like “there is a 95% chance
that this difference was not by chance.” The value 95% is arbitrary,
and occasionally people use weaker (90%) test or stronger (99.5%)
tests.

The t-test is an example of a parametric test. It is applicable when
the null hypothesis states that the difference between two responses
has mean zero and unknown variance. The t-test actually assumes
that data is distributed according to a Gaussian distribution, which is
probably not true of binary responses. Fortunately, for large samples
(at least a few hundred), binary seamples are well approximated by
a Gaussian distribution. So long as your sample is sufficiently large,
the t-test is reasonable either for regression or classification problems.

t significance
≥ 1.28 90.0%
≥ 1.64 95.0%
≥ 1.96 97.5%
≥ 2.58 99.5%

Table 4.2: Table of significance values
for the t-test.

Suppose that you evaluate two algorithm on N-many examples.
On each example, you can compute whether the algorithm made
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the correct prediction. Let a1, . . . , aN denote the error of the first
algorithm on each example. Let b1, . . . , bN denote the error of the
second algorithm. You can compute µa and µb as the means of a and
b, respecitively. Finally, center the data as â = a− µa and b̂ = b− µb.
The t-statistic is defined as:

t = (µa − µb)

√
N(N − 1)

∑n(ân − b̂n)2
(4.15)

After computing the t-value, you can compare it to a list of values
for computing confidence intervals. Assuming you have a lot of data
(N is a few hundred or more), then you can compare your t-value to
Table 4.2 to determine the significance level of the difference. What does it mean for the means

µa and µb to become further apart?
How does this affect the t-value?
What happens if the variance of a
increases?

?
One disadvantage to the t-test is that it cannot easily be applied

to evaluation metrics like f-score. This is because f-score is a com-
puted over an entire test set and does not decompose into a set of
individual errors. This means that the t-test cannot be applied.

Fortunately, cross validation gives you a way around this problem.
When you do K-fold cross validation, you are able to compute K
error metrics over the same data. For example, you might run 5-fold
cross validation and compute f-score for every fold. Perhaps the f-
scores are 92.4, 93.9, 96.1, 92.2 and 94.4. This gives you an average
f-score of 93.8 over the 5 folds. The standard deviation of this set of
f-scores is:

σ =

√
1

N − 1 ∑
n
(ai − µ)2 (4.16)

=

√
1
4
(1.96 + 0.01 + 5.29 + 2.56 + 0.36) (4.17)

= 1.595 (4.18)

You can now assume that the distribution of scores is approximately
Gaussian. If this is true, then approximately 70% of the proba-
bility mass lies in the range [µ − σ, µ + σ]; 95% lies in the range
[µ− 2σ, µ + 2σ]; and 99.5% lies in the range [µ− 3σ, µ + 3σ]. So, if we
were comparing our algorithm against one whose average f-score was
90.6%, we could be 95% certain that our superior performance was
not due to chance.5 5 Had we run 10-fold cross validation

we might be been able to get tighter
confidence intervals.

WARNING: A confidence of 95% does not mean “There is a 95%
chance that I am better.” All it means is that if I reran the same ex-
periment 100 times, then in 95 of those experiments I would still win.
These are very different statements. If you say the first one, people
who know about statistics will get very mad at you!

One disadvantage to cross validation is that it is computationally
expensive. More folds typically leads to better estimates, but every
new fold requires training a new classifier. This can get very time
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Algorithm 10 BootstrapEvaluate(y, ŷ, NumFolds)
1: scores← [ ]
2: for k = 1 to NumFolds do
3: truth← [ ] // list of values we want to predict
4: pred← [ ] // list of values we actually predicted
5: for n = 1 to N do
6: m← uniform random value from 1 to N // sample a test point
7: truth← truth ⊕ ym // add on the truth
8: pred← pred ⊕ ŷm // add on our prediction
9: end for

10: scores← scores ⊕ f-score(truth, pred) // evaluate
11: end for
12: return (mean(scores), stddev(scores))

consuming. The technique of bootstrapping (and closely related idea
of jack-knifing can address this problem.

Suppose that you didn’t want to run cross validation. All you have
is a single held-out test set with 1000 data points in it. You can run
your classifier and get predictions on these 1000 data points. You
would like to be able to compute a metric like f-score on this test set,
but also get confidence intervals. The idea behind bootstrapping is
that this set of 1000 is a random draw from some distribution. We
would like to get multiple random draws from this distribution on
which to evaluate. We can simulate multiple draws by repeatedly
subsampling from these 1000 examples, with replacement.

To perform a single bootstrap, you will sample 1000 random points
from your test set of 1000 random points. This sampling must be
done with replacement (so that the same example can be sampled
more than once), otherwise you’ll just end up with your original test
set. This gives you a bootstrapped sample. On this sample, you can
compute f-score (or whatever metric you want). You then do this 99
more times, to get a 100-fold bootstrap. For each bootstrapped sam-
ple, you will be a different f-score. The mean and standard deviation
of this set of f-scores can be used to estimate a confidence interval for
your algorithm.

The bootstrap resampling procedure is sketched in Algorithm 4.7.
This takes three arguments: the true labels y, the predicted labels ŷ
and the number of folds to run. It returns the mean and standard
deviation from which you can compute a confidence interval.

4.8 Debugging Learning Algorithms

Learning algorithms are notoriously hard to debug, as you may have
already experienced if you have implemented any of the models
presented so far. The main issue is that when a learning algorithm
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doesn’t learn, it’s unclear if this is because there’s a bug or because
the learning problem is too hard (or there’s too much noise, or . . . ).
Moreover, sometimes bugs lead to learning algorithms performing
better than they should: these are especially hard to catch (and always
a bit disappointing when you do catch them).

Obviously if you have a reference implementation, you can at-
tempt to match its output. Otherwise, there are two things you can
do to try to help debug. The first is to do everything in your power
to get the learning algorithm to overfit. If it cannot at least overfit the
training data, there’s definitely something wrong. The second is to
feed it some tiny hand-specified two dimensional data set on which
you know what it should do and you can plot the output.

The easiest way to try to get a learning algorithm to overfit is to
add a new feature to it. You can call this feature the CheatingIsFun

feature6. The feature value associated with this feature is +1 if this 6 Note: cheating is actually not fun and
you shouldn’t do it!is a positive example and −1 (or zero) if this is a negative example.

In other words, this feature is a perfect indicator of the class of this
example.

If you add the CheatingIsFun feature and your algorithm does
not get near 0% training error, this could be because there are too
many noisy features confusing it. You could either remove a lot of
the other features, or make the feature value for CheatingIsFun

either +100 or −100 so that the algorithm really looks at it. If you
do this and your algorithm still cannot overfit then you likely have a
bug. (Remember to remove the CheatingIsFun feature from your
final implementation!)

A second thing to try is to hand-craft a data set on which you
know your algorithm should work. This is also useful if you’ve man-
aged to get your model to overfit and have simply noticed that it
does not generalize. For instance, you could run KNN on the XOR
data. Or you could run perceptron on some easily linearly separable
data (for instance positive points along the line x2 = x1 + 1 and neg-
ative points along the line x2 = x1 − 1). Or a decision tree on nice
axis-aligned data.

When debugging on hand-crafted data, remember whatever you
know about the models you are considering. For instance, you know
that the perceptron should converge on linearly separable data, so
try it on a linearly separable data set. You know that decision trees
should do well on data with only a few relevant features, so make
your label some easy combination of features, such as y = x1 ∨ (x2 ∧
¬x3). You know that KNN should work well on data sets where the
classes are well separated, so try such data sets.

The most important thing to keep in mind is that a lot goes in to
getting good test set performance. First, the model has to be right for
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the data. So crafting your own data is helpful. Second, the model has
to fit the training data well, so try to get it to overfit. Third, the model
has to generalize, so make sure you tune hyperparameters well.

Figure 4.16: prac:imageanswers: object
recognition answers

TODO: answers to image questions

4.9 Exercises

Exercise 4.1. TODO. . .
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